检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yilong Liu Achim Fischer Peter Eberhard Baohai Wu
机构地区:[1]Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Northwestern Polytechnical University [2]Institute of Engineering and Computational Mechanics,University of Stuttgart
出 处:《Acta Mechanica Sinica》2015年第3期406-415,共10页力学学报(英文版)
基 金:partially supported by a scholarship from the China Scholarship Council;the German Research Foundation (DFG) for financial support within the Cluster of Excellence in Simulation Technology (EXC 310) at the University of Stuttgart
摘 要:A high-order full-discretization method (FDM) using Hermite interpolation (HFDM) is proposed and implemented for periodic systems with time delay. Both Lagrange interpolation and Hermite interpolation are used to approximate state values and delayed state values in each discretization step. The transition matrix over a single period is determined and used for stability analysis. The proposed method increases the approximation order of the semidiscretization method and the FDM without increasing the computational time. The convergence, precision, and efficiency of the proposed method are investigated using several Mathieu equations and a complex turning model as examples. Comparison shows that the proposed HFDM converges faster and uses less computational time than existing methods.A high-order full-discretization method (FDM) using Hermite interpolation (HFDM) is proposed and implemented for periodic systems with time delay. Both Lagrange interpolation and Hermite interpolation are used to approximate state values and delayed state values in each discretization step. The transition matrix over a single period is determined and used for stability analysis. The proposed method increases the approximation order of the semidiscretization method and the FDM without increasing the computational time. The convergence, precision, and efficiency of the proposed method are investigated using several Mathieu equations and a complex turning model as examples. Comparison shows that the proposed HFDM converges faster and uses less computational time than existing methods.
关 键 词:Full-discretization method Time delay -Stability Chatter
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62