COMPARISONS OF CIRCULATION ANOMALIES BETWEEN THE DAILY PRECIPITATION EXTREME AND NON-EXTREME EVENTS IN THE MIDDLE AND LOWER REACHES OF YANGTZE RIVER IN BOREAL SUMMER  被引量:3

COMPARISONS OF CIRCULATION ANOMALIES BETWEEN THE DAILY PRECIPITATION EXTREME AND NON-EXTREME EVENTS IN THE MIDDLE AND LOWER REACHES OF YANGTZE RIVER IN BOREAL SUMMER

在线阅读下载全文

作  者:韩洁 管兆勇 李明刚 

机构地区:[1]Key Laboratory of the Ministry of Education for Meteorological Disaster in Nanjing University of Information Science & Technology, Nanjing 210044 China [2]Baoji Meteorological Bureau, Baoji, Shaanxi 721006 China

出  处:《Journal of Tropical Meteorology》2015年第2期131-142,共12页热带气象学报(英文版)

基  金:National Natural Science Foundation of China(41330425);National Key Technology R&D Program(2007BAC29B02);"Qinglan"Project of Jiangsu Province for Cultivating Research Teams

摘  要:Based on the NCEP/NCAR reanalysis dataset and in situ meteorological observations of daily precipitation in boreal summer from 1979 to 2008, the features of circulation anomalies have been investigated using the composite analysis for the extreme events and non-extreme events of regional mean daily rainfall(RMDR) occurring over the midand lower- Yangtze valley(MLYV). The extreme RMDR(ERMDR) events are the events at and above the percentile99 in the rearranged time-series of the RMDR with ascending order of rainfall amount. The non-extreme RMDR events are those at the percentiles 90-85 and 80-75 separately. Our results suggest that the threshold value is 25 mm/day for the ERMDR at percentile 99. Precipitation at all the percentiles is found to occur more frequently in the Meiyu rainfall season in MLYV, and the ERMDR events have occurred with higher frequency since the 1990 s. For the percentiles-associated events, the MLYV is under the control of an anomalous cyclonic circulation in the mid- and lower- troposphere with vastly different anomalous circulation at higher levels. However, at both low and high levels, the ERMDR events-related anomalous circulation is stronger compared to that linked to the non-ERMDR events. The dominant sources of water vapor differ between the ERMDR and non-ERMDR events. During the ERMDR events plentiful water vapor is transported from the Bay of Bengal into the MLYV directly by divergence while there is distinctly increased water vapor from the South China Sea(SCS) in non-RMERMDR episodes. The diabatic heating rates < Q1>, < Q2> and< Q1>- < Q2> have their anomalous patterns and are consistent with each other for these percentiles but their strength decreases markedly with the drop of rainfall intensity. For the precipitation at percentiles 99 and 90-85, the sea surface temperature anomalies(SSTA) in the Pacific distribute positively(negatively) in the south(north), and are stronger when the ERMDR emerges, with little or no SSTA as the events at percentile 80-75 occur. Besides, these rBased on the NCEP/NCAR reanalysis dataset and in situ meteorological observations of daily precipitation in boreal summer from 1979 to 2008, the features of circulation anomalies have been investigated using the composite analysis for the extreme events and non-extreme events of regional mean daily rainfall(RMDR) occurring over the midand lower- Yangtze valley(MLYV). The extreme RMDR(ERMDR) events are the events at and above the percentile99 in the rearranged time-series of the RMDR with ascending order of rainfall amount. The non-extreme RMDR events are those at the percentiles 90-85 and 80-75 separately. Our results suggest that the threshold value is 25 mm/day for the ERMDR at percentile 99. Precipitation at all the percentiles is found to occur more frequently in the Meiyu rainfall season in MLYV, and the ERMDR events have occurred with higher frequency since the 1990 s. For the percentiles-associated events, the MLYV is under the control of an anomalous cyclonic circulation in the mid- and lower- troposphere with vastly different anomalous circulation at higher levels. However, at both low and high levels, the ERMDR events-related anomalous circulation is stronger compared to that linked to the non-ERMDR events. The dominant sources of water vapor differ between the ERMDR and non-ERMDR events. During the ERMDR events plentiful water vapor is transported from the Bay of Bengal into the MLYV directly by divergence while there is distinctly increased water vapor from the South China Sea(SCS) in non-RMERMDR episodes. The diabatic heating rates 〈 Q1〉, 〈 Q2〉 and〈 Q1〉- 〈 Q2〉 have their anomalous patterns and are consistent with each other for these percentiles but their strength decreases markedly with the drop of rainfall intensity. For the precipitation at percentiles 99 and 90-85, the sea surface temperature anomalies(SSTA) in the Pacific distribute positively(negatively) in the south(north), and are stronger when the ERMDR emerges, with little or no SSTA as the events

关 键 词:extreme regional mean daily rainfall non-extreme daily rainfall circulation features mid-and lowerYangtze valley sea surface temperature anomaly 

分 类 号:P426.6[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象