Localized Properties of Rogue Wave for a Higher-Order Nonlinear Schr?dinger Equation  被引量:2

Localized Properties of Rogue Wave for a Higher-Order Nonlinear Schr?dinger Equation

在线阅读下载全文

作  者:柳伟 邱德勤 贺劲松 

机构地区:[1]School of Mathematical Sciences, University of Science and Technologe of China [2]Department of Mathematics, Ningbo University

出  处:《Communications in Theoretical Physics》2015年第5期525-534,共10页理论物理通讯(英文版)

基  金:Supported by the National Natural Science Foundation of China under Grant No.11271210;the K.C.Wong Magna Fund in Ningbo University

摘  要:In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters a and ;3 which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms.

关 键 词:rogue wave higher-order nonlinear Schr6dinger equation Darboux transformation 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象