检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨挺[1] 袁博[1] 赵承利 吴成[1] 盆海波[1]
机构地区:[1]天津大学电气与自动化工程学院,天津300072 [2]天津市航海仪器研究所,天津300131
出 处:《天津大学学报(自然科学与工程技术版)》2015年第6期481-487,共7页Journal of Tianjin University:Science and Technology
基 金:国家国际科技合作专项资助项目(2013DFA11040);国家自然科学基金资助项目(61172014);天津市自然科学基金资助项目(12JCZDJC21300)
摘 要:随着智能电网的发展,电力通信系统自动交换光网络(ASON)的网架结构日趋复杂,拓扑优化方法成为保证可靠通信、提升网络健壮性的首要关键技术.为此,对电力通信ASON网络拓扑优化问题建模,并提出一种以代数连通度为测度的网络边扩充优化二分算法.通过理论证明赋权图的拉普拉斯矩阵对应特征方程式的单调性,进而采用二分算法快速求解该单调非线性特征方程式的根,确定最优边扩充策略.仿真结果表明在链路失效时,网络边扩充优化二分算法能够以O(4mn lb(???))低复杂度找到精确解,降低端到端通信路径长度,提升网络效能函数.With the development of smart grid, the structure of electrical power communication automatic switched optical network (ASON) is getting increasingly complex. Topology optimization becomes one of the key technologies to guarantee the transmitting reliability as well as improve the robustness of network. In this paper, ASON's topology optimization problem was modeled and a bisection algorithm of edge augmentation for weighted network was proposed, in which the algebraic connectivity was defined as counting measure. The monotonicity of the characteristic equation corresponding to Laplace matrix for weighted graph was theoretically proved. Therefore, the bisection algorithm was employed to rapidly solve this monotone nonlinear characteristic equation and the optimal edge-expansion strategy was obtained. Simulation results show that when links fail, the bisection algorithm of edge augmentation can present exact solutions with low complexity of O (4ran lb (ξ/δ)), which can effectively reduce point-to-point communication path length and also improve the value of network's efficiency function.
分 类 号:TM73[电气工程—电力系统及自动化] TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222