从工业4.0看储能系统锂电池寿命的预测  被引量:2

Predication of Lithium Battery Life in the Energy Storage System from the View of Industry 4.0

在线阅读下载全文

作  者:叶笑冬 陆宇[1] 王子健[1] 李劲[1] 

机构地区:[1]上海电气集团股份有限公司,中央研究院,上海200070

出  处:《上海电气技术》2015年第1期1-3,35,共4页Journal of Shanghai Electric Technology

摘  要:储能锂电池寿命预测是储能技术的一个核心技术,也是工作难点。对储能系统锂电池的寿命预测一般有经验法、特征法和数据驱动法,但是这些方法都有局限性,特别是当储能系统锂电池存在一定个体差异以及锂电池随着老化程度的加剧,预测准确度就会受到很大影响。为了解决锂电池寿命预测个性化差异问题,从工业4.0的视角,提出了基于数据驱动的动态调整的思路,以嵌入式系统为基础,通过嵌入式数据库作为载体,进行动态计算调整相关参数,以保证储能系统锂电池整个寿命周期的预测准确度。Lifetime prediction of lithium battery is one of the kernels in energy storage technology and it is also a bottleneck. Lifetime prediction for lithium battery in energy storage system is generally obtained through empirical method, characteristic method and data-driven method. However, all of these methods have limitations. Especially in the cases when lithium battery in the energy storage system has certain individual differences and when the lithium battery intensifies its aging degrees, the prediction accuracy will be greatly affected. In order to attack the personalized disparities in prediction of lithium battery life, an idea concerning data-driven dynamic adjustment was proposed from the visual angle of industry 4.0. On the basis of the embedded systems it took the embedded database as a carrier for dynamic calculations and parameter adjustment in order to ensure the predication accuracy of the entire life cycle of the lithium battery in the energy storage system.

关 键 词:工业4.0 锂离子电池 循环寿命 嵌入式数据库 

分 类 号:TM911[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象