检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海电气集团股份有限公司,中央研究院,上海200070
出 处:《上海电气技术》2015年第1期1-3,35,共4页Journal of Shanghai Electric Technology
摘 要:储能锂电池寿命预测是储能技术的一个核心技术,也是工作难点。对储能系统锂电池的寿命预测一般有经验法、特征法和数据驱动法,但是这些方法都有局限性,特别是当储能系统锂电池存在一定个体差异以及锂电池随着老化程度的加剧,预测准确度就会受到很大影响。为了解决锂电池寿命预测个性化差异问题,从工业4.0的视角,提出了基于数据驱动的动态调整的思路,以嵌入式系统为基础,通过嵌入式数据库作为载体,进行动态计算调整相关参数,以保证储能系统锂电池整个寿命周期的预测准确度。Lifetime prediction of lithium battery is one of the kernels in energy storage technology and it is also a bottleneck. Lifetime prediction for lithium battery in energy storage system is generally obtained through empirical method, characteristic method and data-driven method. However, all of these methods have limitations. Especially in the cases when lithium battery in the energy storage system has certain individual differences and when the lithium battery intensifies its aging degrees, the prediction accuracy will be greatly affected. In order to attack the personalized disparities in prediction of lithium battery life, an idea concerning data-driven dynamic adjustment was proposed from the visual angle of industry 4.0. On the basis of the embedded systems it took the embedded database as a carrier for dynamic calculations and parameter adjustment in order to ensure the predication accuracy of the entire life cycle of the lithium battery in the energy storage system.
分 类 号:TM911[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.24.193