检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏晓楠[1] 唐延林[1] 方智文[1] 凌智钢[1] 李玉鹏[1] 方世诚
机构地区:[1]贵州大学物理系,贵阳550025
出 处:《中国农学通报》2015年第17期65-69,共5页Chinese Agricultural Science Bulletin
基 金:国家自然科学基金"烤烟理化参数的光谱监测机理与方法研究"(11164004);贵州大学创新基金"不同氮;钾营养下烤烟理化参数光谱监测模型研究"(研理工2014068)
摘 要:为探索不同烘烤条件下烤烟纤维素含量近红外光谱检测模型,采用偏最小二乘回归法(PLS)对不同烘烤条件下的共85个样品,分别基于全部波长建立模型。常规烘烤时,定标集r=0.9949,RMSE=0.1122;交叉验证集r=0.9234,RMSE=0.4636;预测集r=0.8982,RMSE=0.6963。低温烘烤时,定标集r=0.9811,RMSE=0.3279;交叉验证集r=0.9456,RMSE=0.5290;预测集r=0.9938,RMSE=0.1608。高温烘烤时,定标集r=0.9128,RMSE=0.4381;交叉验证集r=0.8215,RMSE=0.6162;预测集r=0.9743,RMSE=0.1986。结果表明,采用偏最小二乘法预测不同烘烤条件下烤烟纤维素含量是可行的。The NIR spectral detection model of flue-cured tobacco cellulose content under different baking conditions was explored. For 85 samples under different baking conditions, partial least squares regression (PLS) was used to establish the regression model based on all wavelengths. Under common baking, the regression coefficient r=0.9949, RMSE=0.1122 in calibration set; r=0.9234, RMSE=0.4636 in cross validation set; r=0.8982, RMSE=0.6963 in prediction set. Under low temperature baking, r=0.9811, RMSE=0.3279 in calibration set; r=0.9456, RMSE=0.5290 in cross validation set; r=0.9938, RMSE=0.1608 in prediction set. Under high temperature baking, r=0.9128, RMSE=0.4381 in calibration set; r=0.8215, RMSE=0.6162 in cross validation set; r=0.9743, RMSE=0.1986 in prediction set. The results showed that using the partial least squares regression to predict the cellulose content of flue-cured tobacco under different baking conditions was feasible.
关 键 词:不同烘烤条件 烤烟 纤维素含量 近红外光谱 偏最小二乘回归
分 类 号:S127[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.225