检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《上海交通大学学报》2015年第6期897-901,共5页Journal of Shanghai Jiaotong University
基 金:国家自然科学基金重点项目(61034006);国家自然科学基金项目(61174119;60774070)
摘 要:为了有效监控具有非高斯数据特性的工业过程,提出了一种新的基于非高斯信息的JITL(Just-In-Time Learning)软测量模型.首先通过非高斯非相似度测量选择JITL局部建模样本;然后建立局部ICA-PLS回归模型实现工业过程质量变量监控.该方法从局部建模样本选择到局部回归模型建立能够有效处理工业过程数据的非高斯特性,并且保留了JITL建模的优点,能够有效地处理工业过程时变特性以及非线性.通过硫回收处理过程的应用,验证了方法的有效性.In order to monitor the non-Gaussian industrial process, a novel non-Gaussian information based JITL soft sensor model was proposed in this paper. First, the non-Gaussian dissimilarity measure selects the most relevant local modeling samples of JITL model. Then, an ICA-PLS regression method was estab- lished on the most relevant local samples for quality variable prediction. From the local relevant sample se- lection to the final regression model construction, the proposed method can efficiently extract the higher- order statistical information and is well suited for the non-Gaussian process quality prediction. Meanwhile, the proposed method can well cope with the changes in process characteristics as well as nonlinearity. The validity of the proposed method was verified on the sulfur recovery unit.
关 键 词:非高斯非相似度测量 JITL 质量预测 硫回收处理过程
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222