检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚晨昊[1]
出 处:《内蒙古石油化工》2014年第24期5-8,共4页Inner Mongolia Petrochemical Industry
摘 要:温度监测与其他井下实时监测方法相比较有很多优势,在近年来的智能井技术中起到很大作用,尤其对超高压井的意义更为重要。井下温度场分布的研究是井温测井的理论基础。充分考虑超高压条件对流体物性的影响,根据能量守恒方程建立了一维温度场数学模型,模拟超高压油井定流量生产时油藏产出流体温度情况。数值模拟结果表明,入井流体温度由于焦耳-汤普森效应和热传递作用而发生温度变化,并且生产压差越大、流量越大时,入井流体温度越高。Temperature surveillance which has a profound effect on intelligent well systems has many advantages compared with other reservoir surveillance technologies. The research of downhole temperature distribution is the theoretical basis of temperature surveillance. Considered are the effects on fluid physical propertied by ultrahigh pressure, then developed is the 1-D temperature field mathematical model. Simulated are the case of downhole temperature distribution in ultrahigh pressure wells with constant rate. Mathematical simulation results show that the downhole temperature is changed because of Joule-Thomson Effect and heat transfer effect. The greater production pressure and the greater the flow rate, the greater the fluid into the well temperature is higher.
分 类 号:TE151[石油与天然气工程—油气勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42