机构地区:[1]Anhui Key Laboratory of Spintronic and Nano-metric Materials [2]School of Mechanics of Electronic Engineering, Suzhou University [3]School of Electrical Engineering, Anhui Engineering University
出 处:《Rare Metals》2015年第5期329-333,共5页稀有金属(英文版)
基 金:financially supported by the Key Program of National Natural Science Foundation of China(No.19934003);the Program of Natural Science Foundation of Anhui Province(No.1308085MA11);the Key Programs of Natural Science Research of Anhui Education Department(Nos.KJ2013A245 and KJ2012Z404);the Open Projects of Anhui Key Laboratory of Spintronic and Nanometric Materials(Nos.2012YKF09,2012YKF10,and 2012YKF08)
摘 要:The samples of La0.80Sr0.15Ag0.05MnO3/x(CuO) (x = 0, 0.05, 0.10, 0.15, 0.20) were prepared by the solid-state reaction method, and the structure of the sampies was detected by X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), electric transport mechanism, and magnetoresistance enhancement, and the temperature stability of magnetoresistance of the samples was studied through resistivity-temperature (ρ-T) curves, ρ-T fitted curves, and magnetoresistance-temperature (MR-T) curves. The results indicate that ρ-T data can be fitted by the formula ρ = ρ0 + AT^2 very well, and the electric transport mechanism of all the samples in metal-like area is the scattering of single magneton upon spin electron; the magnetoresistance of composite samples is far larger than that of the original material, and the MR peak value of the sample with x = 0.20 is nearly 4 times as large as that of the sample with x = 0; composite samples have comparatively good temperature stability of magnetoresistance in the temperature range of 200-260 K, and the magnetoresistance of the sample with x = 0.15 almost does not change with temperature and keeps at (5.03 ± 0.20) % in the temperature range of 210-260 K.The samples of La0.80Sr0.15Ag0.05MnO3/x(CuO) (x = 0, 0.05, 0.10, 0.15, 0.20) were prepared by the solid-state reaction method, and the structure of the sampies was detected by X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), electric transport mechanism, and magnetoresistance enhancement, and the temperature stability of magnetoresistance of the samples was studied through resistivity-temperature (ρ-T) curves, ρ-T fitted curves, and magnetoresistance-temperature (MR-T) curves. The results indicate that ρ-T data can be fitted by the formula ρ = ρ0 + AT^2 very well, and the electric transport mechanism of all the samples in metal-like area is the scattering of single magneton upon spin electron; the magnetoresistance of composite samples is far larger than that of the original material, and the MR peak value of the sample with x = 0.20 is nearly 4 times as large as that of the sample with x = 0; composite samples have comparatively good temperature stability of magnetoresistance in the temperature range of 200-260 K, and the magnetoresistance of the sample with x = 0.15 almost does not change with temperature and keeps at (5.03 ± 0.20) % in the temperature range of 210-260 K.
关 键 词:Temperature stability of magnetoresistance Magnetoresistance enhancement Electric transport mechanism Two-phase composite
分 类 号:TB33[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...