云南个旧竹林矿段三维成矿预测及靶区优选  被引量:12

The 3D metallogenic prediction and optimization of targets in the Zhulin ore block of Gejiu, Yunnan Province

在线阅读下载全文

作  者:史蕊[1,2] 陈建平[2] 王刚[3] 王江霞[2] 

机构地区:[1]中国地质科学院地质研究所,北京100037 [2]中国地质大学(北京)地球科学与资源学院,北京100083 [3]中国地质科学院矿产资源研究所,北京100037

出  处:《地质通报》2015年第5期944-952,共9页Geological Bulletin of China

基  金:国土资源部公益性行业科研专项经费项目(编号:201011002);中国地质调查局项目(编号:1212011140047)

摘  要:近年来,云南个旧超大型锡多金属矿集区已探明资源储量严重消耗,矿业形势十分严峻,探明深部找矿空间成为该地区的找矿重点。系统梳理竹林矿段的地质背景和找矿模型,从三维地质建模的概念出发,利用已有的勘探线剖面图、中段平面图、地形地质图等资料,基于Surpac软件建立了竹林矿段的地表、地层、岩体、断裂和已知矿体的实体模型。并应用证据权法进行了该矿段的深部矿产资源预测,圈定4处成矿有利靶区,预测深度达2550m。预测结果显示,61.02%的已知矿体与预测远景区的块体具有空间一致性,证明了预测的准确性,也说明基于三维地质建模技术在深部成矿预测的方法是行之有效的。In recent years, the proved reserves for the Gejiu superlarge tin-polymetallic ore concentration area have been consumed excessively and the situation of mining industry has become extremely critical. Therefore, the exploration of the deep space has be- come the prospecting focus in this area. Based on analyzing geological backgrounds and prospecting model systematically in the Zhu- lin ore block and employing the concept of 3D geological modeling, the authors built the 3D geological model of surface, strata, rocks, structures and orebodies with Surpac software in the study area according to geological sections along the exploration lines, engineering deployment maps and topographic and geological maps. In addition, the authors chose and utilized the weight of evidence method to predict and evaluate mineral resources at great depth and, as a result, delineated four targets through optimization. The prognostic depth reached 2550m. The prediction results show that 61.02% of the known ore body is consistent with the prognostic prospective area in space, which indicates that the prediction is accurate and the prediction method based on 3D visualization technology is effective.

关 键 词:三维成矿预测 靶区优选 竹林 

分 类 号:P618.2[天文地球—矿床学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象