Influence of calcination temperature on selective catalytic reduction of NO_x with NH_3 over CeO_2-ZrO_2-WO_3 catalyst  被引量:8

Influence of calcination temperature on selective catalytic reduction of NO_x with NH_3 over CeO_2-ZrO_2-WO_3 catalyst

在线阅读下载全文

作  者:李军燕 宋忠贤 宁平 张秋林 刘昕 李昊 黄真真 

机构地区:[1]Faculty of Environmental Science and Engineering, Kunming University of Science and Technology [2]College of Environmental Science and Engineering, Hunan University

出  处:《Journal of Rare Earths》2015年第7期726-735,共10页稀土学报(英文版)

基  金:Project supported by the National Natural Science Foundation of China(21377048,21307047);the Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education(LYJ1309)

摘  要:A series of CeO2-ZrO2-WO3 catalysts for the selective catalytic reduction (SCR) of NO with NH3 were prepared by hydrothermal method. The influence of calcination temperature on the catalytic activity, microstructure, surface acidity and redox behavior of CeO2-ZrO2-WO3 catalyst was investigated using various characterization methods. It was found that the CeO2-ZrO2-WO3 catalyst calcined at 600 ℃ showed the best catalytic performance and excellent N2 selectivity, and yielded more than 90% NO conversion in a wide temperature range of 250-500 ℃ with a space velocity (GHSV) of 60000 131. As the calcination temperature was increased from 400 to 600 ℃, the NO conversion obviously increased, but decreased at higher calcination temperature. The results implied that the higher surface area, the strongest synergistic interaction, the superior redox property and the highly dispersed or amorphous WO3 species contributed to the excellent SCR activity of the CeO2-ZrO2-WO3 catalyst calcined at 600℃.A series of CeO2-ZrO2-WO3 catalysts for the selective catalytic reduction (SCR) of NO with NH3 were prepared by hydrothermal method. The influence of calcination temperature on the catalytic activity, microstructure, surface acidity and redox behavior of CeO2-ZrO2-WO3 catalyst was investigated using various characterization methods. It was found that the CeO2-ZrO2-WO3 catalyst calcined at 600 ℃ showed the best catalytic performance and excellent N2 selectivity, and yielded more than 90% NO conversion in a wide temperature range of 250-500 ℃ with a space velocity (GHSV) of 60000 131. As the calcination temperature was increased from 400 to 600 ℃, the NO conversion obviously increased, but decreased at higher calcination temperature. The results implied that the higher surface area, the strongest synergistic interaction, the superior redox property and the highly dispersed or amorphous WO3 species contributed to the excellent SCR activity of the CeO2-ZrO2-WO3 catalyst calcined at 600℃.

关 键 词:CeO2-ZrO2-WO3 selective catalytic reduction calcination temperature AMORPHOUS synergistic interaction rare earths 

分 类 号:X701[环境科学与工程—环境工程] O643.36[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象