机构地区:[1]LPMMAT,Hassan II University-Casablanca, Faculty of Science Ain Chock, BP 5366, Maarif-Casablanca, Morocco [2]ICMPE-CMTR, UMR CNRS 7182, 2-8, H. Dunant St, 94320 Thiais, France [3]Néel Institue, CNRS and Joseph Fourier University
出 处:《Journal of Rare Earths》2015年第7期740-745,共6页稀土学报(英文版)
摘 要:Crystal structure, magnetic properties and magnetocaloric effects (MCE) of La1-xBixFe1 1.4Si1.6 (x=0.0 and 0.1) compounds were investigated by X-ray diffraction and magnetization measurements. The La1-xBixFe11.4Si1.6 compounds presented a cubic NaZnx3 type structure. First, the magnetization behavior and the magnetic transition were analyzed in terms of Landau theory. Then, Bi substitution for La in La1-xBixFe11.4Si1.6 compounds led to a decrease in magnetic entropy change (-△SM^max) but an increase in Curie temperature (Tc) significantly. The significant increase of Tc by Bi substitution from 202.5 to 256 K for x=0.0 and x=0.1 respectively was attributed to an increase in the Fe-Fe exchange interactions. Moreover, magnetocaloric effect was calculated in terms of isothermal magnetic entropy change. The maximum values of (-△SM^max ) of La1-xBixFe11.4Si1.6 for x=-0.0 and 0.1 compounds were found to be, respectively, 22.56 and 4.36 J/(kg.K) under an applied magnetic field change of 5 T. For the same applied magnetic field (μ0H=5 T), the relative cooling power (RCP) values were found to vary between 487 and 296 J/kg.Crystal structure, magnetic properties and magnetocaloric effects (MCE) of La1-xBixFe1 1.4Si1.6 (x=0.0 and 0.1) compounds were investigated by X-ray diffraction and magnetization measurements. The La1-xBixFe11.4Si1.6 compounds presented a cubic NaZnx3 type structure. First, the magnetization behavior and the magnetic transition were analyzed in terms of Landau theory. Then, Bi substitution for La in La1-xBixFe11.4Si1.6 compounds led to a decrease in magnetic entropy change (-△SM^max) but an increase in Curie temperature (Tc) significantly. The significant increase of Tc by Bi substitution from 202.5 to 256 K for x=0.0 and x=0.1 respectively was attributed to an increase in the Fe-Fe exchange interactions. Moreover, magnetocaloric effect was calculated in terms of isothermal magnetic entropy change. The maximum values of (-△SM^max ) of La1-xBixFe11.4Si1.6 for x=-0.0 and 0.1 compounds were found to be, respectively, 22.56 and 4.36 J/(kg.K) under an applied magnetic field change of 5 T. For the same applied magnetic field (μ0H=5 T), the relative cooling power (RCP) values were found to vary between 487 and 296 J/kg.
关 键 词:NaZn13 itinerant-electron metamagnetic transition magnetocaloric effects rare earths
分 类 号:TG132.2[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...