Synthesis/design optimization of SOFC-PEM hybrid system under uncertainty  

不确定性条件下对固体氧化物燃料电池-质子交换膜燃料电池联合系统的综合/设计优化(英文)

在线阅读下载全文

作  者:谭玲君 杨晨 周娜娜 

机构地区:[1]Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University

出  处:《Chinese Journal of Chemical Engineering》2015年第1期128-137,共10页中国化学工程学报(英文版)

基  金:Supported by the National Natural Science Foundation of China(50876117);the Fundamental Research Funds for the Central Universities(CDJXS11141149)

摘  要:Solid oxide fuel cell–proton exchange membrane(SOFC–PEM) hybrid system is being foreseen as a valuable alternative for power generation. As this hybrid system is a conceptual design, many uncertainties involving input values should be considered at the early stage of process optimization. We present in this paper a generalized framework of multi-objective optimization under uncertainty for the synthesis/design optimization of the SOFC–PEM hybrid system. The framework is based on geometric, economic and electrochemical models and focuses on evaluating the effect of uncertainty in operating parameters on three conflicting objectives: electricity efficiency, SOFC current density and capital cost of system. The multi-objective optimization provides solutions in the form of a Pareto surface, with a range of possible synthesis/design solutions and a logical procedure for searching the global optimum solution for decision maker. Comparing the stochastic and deterministic Pareto surfaces of different objectives, we conclude that the objectives are considerably influenced by uncertainties because the two trade-off surfaces are different.Solid oxide fuel cell–proton exchange membrane(SOFC–PEM) hybrid system is being foreseen as a valuable alternative for power generation. As this hybrid system is a conceptual design, many uncertainties involving input values should be considered at the early stage of process optimization. We present in this paper a generalized framework of multi-objective optimization under uncertainty for the synthesis/design optimization of the SOFC–PEM hybrid system. The framework is based on geometric, economic and electrochemical models and focuses on evaluating the effect of uncertainty in operating parameters on three conflicting objectives: electricity efficiency, SOFC current density and capital cost of system. The multi-objective optimization provides solutions in the form of a Pareto surface, with a range of possible synthesis/design solutions and a logical procedure for searching the global optimum solution for decision maker. Comparing the stochastic and deterministic Pareto surfaces of different objectives, we conclude that the objectives are considerably influenced by uncertainties because the two trade-off surfaces are different.

关 键 词:Solid oxide fuel cell Proton exchange membrane fuel cell Hybrid system UNCERTAINTY OPTIMIZATION 

分 类 号:TM911.4[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象