基于LRU和扩展CBF的网络大流检测  被引量:1

Network flow measurement based on LRU structure and improved Count Bloom Filter

在线阅读下载全文

作  者:王春龙[1] 刘渊[1] 郑哲渊 

机构地区:[1]江南大学数字媒体学院,江苏无锡214122

出  处:《计算机工程与应用》2015年第13期66-71,共6页Computer Engineering and Applications

基  金:江苏省自然科学基金重点研究专项(No.BK2011003);国家自然科学基金(No.61103223)

摘  要:高速网络流量检测中的大流检测已成为当前一种重要的、高效准确的可扩展流量测量机制,针对CBF(Count Bloom Filter)容易溢出的问题,将扩展的CBF应用于流量测量,防止过滤器溢出,并且结合LRU链表存储机制,共同应用于网络大流检测之中。经理论分析,所研究的流量测量算法LRU_MCBF(Least Recently Used_Multiple Count Bloom Filter)占用空间小,时间复杂度低;通过仿真实验验证了LRU_MCBF在大流测量中漏报率和错报率较低,能实现高速网络环境下大流对象的准确提取。In high-speed network,finding out the heavy flows is becoming a more important,precise and extendible way to measure the network.As a structure used in network measurement,Counting Bloom Filter(CBF)is easy to overflow,pointing to this shortcomings,it is extend to do better in net flow measurement.Besides,LRU is combined with extended CBF,through verification of theory,this flow measurement module LRU_MCBF uses little memory,has low time complexity.The emulational experiments also prove that LRU_MCBF has lower missing rate and error rate,and heavy flows can be find out preciously in high-speed network.

关 键 词:计数型布鲁姆过滤器 流量测量 大流 最近最少使用(LRU) 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象