Learning to Predict Links by Integrating Structure and Interaction Information in Microblogs  

Learning to Predict Links by Integrating Structure and Interaction Information in Microblogs

在线阅读下载全文

作  者:贾岩涛 王元卓 程学旗 

机构地区:[1]Key Laboratory of Network Science and Technology, Institute of Computing Technology Chinese Academy of Sciences, Beijing 100190, China

出  处:《Journal of Computer Science & Technology》2015年第4期829-842,共14页计算机科学技术学报(英文版)

基  金:This work is supported by the National Basic Research 973 Program of China under Grant Nos. 2013CB329602 and 2014CB340405, the National Natural Science Foundation of China under Grant Nos. 61173008, 61232010, 60933005, 61402442, 61402022, and 61303244, Beijing Nova Program under Grant No. Z121101002512063, and the Natural Science Foundation of Beijing under Grant No. 4154086.

摘  要:Link prediction in microblogs by using unsupervised methods has been studied extensively in recent years, which aims to find an appropriate similarity measure between users in the network. However, the measures used by existing work lack a simple way to incorporate the structure of the network and the interactions between users. This leads to the gap between the predictive result and the ground truth value. For example, the F 1-measure created by the best method is around 0.2. In this work, we firstly discover the gap and prove its existence. To narrow this gap, we define the retweeting similarity to measure the interactions between users in Twitter, and propose a structural-interaction based matrix factorization model for following-link prediction. Experiments based on the real-world Twitter data show that our model outperforms state-of-the-art methods.Link prediction in microblogs by using unsupervised methods has been studied extensively in recent years, which aims to find an appropriate similarity measure between users in the network. However, the measures used by existing work lack a simple way to incorporate the structure of the network and the interactions between users. This leads to the gap between the predictive result and the ground truth value. For example, the F 1-measure created by the best method is around 0.2. In this work, we firstly discover the gap and prove its existence. To narrow this gap, we define the retweeting similarity to measure the interactions between users in Twitter, and propose a structural-interaction based matrix factorization model for following-link prediction. Experiments based on the real-world Twitter data show that our model outperforms state-of-the-art methods.

关 键 词:link prediction microblog structure-interaction retweeting similarity matrix factorization 

分 类 号:TP393.092[自动化与计算机技术—计算机应用技术] O236[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象