检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:臧冬伟 陆宝宏[1,2] 朱从飞[1] 陆建宇[1] 刘欢[1] 左建[1]
机构地区:[1]河海大学水文水资源学院,江苏南京210098 [2]河海大学水文水资源与水利工程科学国家重点实验室,江苏南京210098
出 处:《水电能源科学》2015年第7期39-42,6,共5页Water Resources and Power
基 金:国家自然科学基金项目(50979023);水利公益项目(201201026);中国博士后科学基金资助项目(2013M531270);江苏省博士后基金资助项目(1302029C)
摘 要:针对城市需水预测涉及因素众多、不同地区影响因子不尽相同且多寡不一及影响因子的选择直接决定需水量预测的结果与实际是否相符等问题,提出了灰色关联分析法、遗传算法和BP神经网络相结合的需水预测模型,并以南京市为例,通过灰色关联分析法筛选出主要影响因素,采用遗传算法优化BP神经网络,构建基于灰色关联分析的GA-BP神经网络需水预测模型。实例应用结果表明,该模型用于需水预测能够比较全面地考虑需水量影响因子,与传统BP网络相比,GA-BP网络预测精度更高,训练速度更快,可作为资料时间序列较短情况下一种较好的需水预测方法。Urban water requirement prediction normally involves many factors, which are different from place to place, and the choice of influencing factors will directly decide whether the results of water requirement prediction match the actual or not. Hence, this paper proposed a water requirement prediction model which combined the gray correlation analysis method, genetic algorithm (GA) and BP neural network. Taking Nanjing City as an example, based on gray cor- relation analysis, the main factors are screen out, and the BP neural network optimized by genetic algorithm was em- ployed to establish GA-BP neural network water requirement prediction model. The results show that the established model takes a comprehensive consideration of water demand influencing factors, and it is prior to that of the traditional BP neural network in terms of accuracy and training speed. Therefore, the proposed model can provide a better water demand forecasting method in the case of short time series of data.
关 键 词:灰色关联分析 GA-BP神经网络 需水预测 南京市
分 类 号:TV213.4[水利工程—水文学及水资源] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185