基于ASGSO-ENN算法的瓦斯涌出量动态预测模型  被引量:2

Gas Emission Quantity Dynamic Prediction Model Based on ASGSO-ENN Algorithm

在线阅读下载全文

作  者:付华[1] 訾海[1] 

机构地区:[1]辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛125105

出  处:《计算机工程》2015年第7期317-321,共5页Computer Engineering

基  金:国家自然科学基金资助项目(51274118);辽宁省教育厅基金资助项目(L2012119);辽宁省科技攻关计划基金资助项目(2011229011)

摘  要:针对煤矿瓦斯涌出量的多影响因素预测问题,引入荧光因子以自适应调整搜索步长,用于改善基本萤火虫算法后期收敛速度慢及容易陷入局部最优的缺陷。将改进后的自适应步长萤火虫算法与Elman动态反馈神经网络相结合,用于辨识瓦斯涌出非线性系统。通过实时对网络的权值、阈值进行全局寻优,建立基于ASGSO-ENN耦合算法的绝对瓦斯涌出量预测模型。利用矿井监测到的各项历史数据进行实验,结果表明,该模型的预测均方根误差为0.103 4,平均相对变动值为0.000 387。相比于其他工程常用的预测模型,具备更高的预测精度与更强的泛化能力。For the multifactor gas emission quantity predication problem of coal mine, the basic Glowworm Swarm Optimization(GSO) algorithm suffers slow convergence rate in the late stage and is prone to be stuck in local optimum. The luciferin-factor is introduced in this paper to achieve self-adaption of the search step length. The proposed self- Adaptive Step Glowworm Swarm Optimization (ASGSO) algorithm is combined with dynamic feedback Elman Neural Network(ENN) to perform identification of the non-linear gas emission system. By globally searching the optimum of the network weights and thresholds in real-time, the ASGSO-ENN-based model is established by the coupling algorithm to predict the absolute gas emission quantity. The experiments are carried out with the historical monitoring data of the mine and prediction results show that,the root mean square error is 0. 103 4 and the average relative variance is 0. 000 387. The proposed model is practically useful and outperforms other commonly used models in terms of prediction accuracy and generalization ability.

关 键 词:绝对瓦斯涌出量 非线性系统 预测模型 自适应步长萤火虫群优化 ELMAN神经网络 动态反馈 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象