非线性优化的间谐波检测方法  

Research on AR Spectral Estimation and Nonlinear Optimization Inter-harmonic Detection Methods

在线阅读下载全文

作  者:沈鑫 曹敏 王昕 丁心志 刘清蝉 

机构地区:[1]云南电网有限责任公司电力科学研究院,昆明650217

出  处:《云南电力技术》2015年第2期79-83,共5页Yunnan Electric Power

基  金:国家高技术研究发展计划"863计划"(2011AA05A120)

摘  要:利用AR谱估计给出模型的结构和初始参数,解决了非线性优化算法的参数建模问题,也给出了参数的初值;结合非线性优化算法,克服了AR谱估计不能计算谐波幅值和相位的缺点,且进一步提高了频率的计算准确度。非线性优化算法的设计中,首先选用共轭梯度法对参数初值进行预处理,使之接近全局最优解;随后再使用阻尼最小二乘法能使参数迭代的谐波参数计算值),降低迭代算法对初值的敏感度,提高了迭代稳定性和计算效率; AR谱估计与非线性优化结合方法的参数计算准确度高出加Hanning窗插值法1-4个数量级,且有一定的抗噪能力。结果表明,本系统完全满足电压谐波测试仪的要求,可以完全解决CVT传输特性的复杂问题。this paper, by using AR model spectrum estimation structure and initial parameters, solve the problem of the parametric modeling of nonlinear optimization algorithm, the initial value of parameters is also given Combined with the nonlinear optimization algorithm, overcame the AR spectrum estimation can't calculate harmonic amplitude and phase of the faults, and further improve the calculation accuracy of the frequency.The design of nonlinear optimization algorithm, first choose conjugate gradient method for pre-processing, the parameters of the initial value to make it close to the global optimal solution;Then using the damping least-square method can make the parameter iterative harmonic parameter calculation value) , reduce the sensitivity to initial value of iteration al-gorithm, improves the stability of iteration and calculation efficiency;AR spectrum estimation and optimization of nonlinear combina-tion method of parameter calculation accuracy is higher than the Hanning window interpolation method 1 -4 orders of magnitude, and have certain ability to resist noise.Results show that the system can completely satisfy the requirements of voltage harmonic test-er, can completely solve the complex problem of CVT transmission characteristics.

关 键 词:AR谱估计 非线性优化 间谐波 检测方法 

分 类 号:TM935[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象