BFS-HUP模型在潼关站洪水概率预报中的应用  被引量:8

Application of BFS-HUP Model to Flood Probabilistic Forecasting of Tongguan Station

在线阅读下载全文

作  者:蒋晓蕾[1] 梁忠民[1] 王春青[2] 刘晓伟[2] 刘龙庆[2] 

机构地区:[1]河海大学水文水资源学院,江苏南京210098 [2]黄河水利委员会水文局,河南郑州450004

出  处:《人民黄河》2015年第7期13-15,21,共4页Yellow River

基  金:国家科技支撑计划项目(2013BAC10B02);国家自然科学基金资助项目(51179046)

摘  要:采用马斯京根演算法作为确定性预报模型,并选用贝叶斯预报系统(BFS)的水文不确定性处理器(HUP)作为概率预报模型,获得预报变量的概率分布,实现黄河潼关站洪水的概率预报。将预报变量概率分布的中位数作为定值预报与确定性预报进行对比,发现预报精度有所提高,表明贝叶斯模型的预报校正能力较强。通过设定不同确定性预报精度的情景方案,探讨了确定性预报精度对概率预报可靠度的影响。结果表明,随着确定性预报精度的提高,概率预报区间宽度和离散度均有所减小;HUP洪水概率预报的可靠度对确定性预报的偶然性误差比较敏感,对系统偏差相对不敏感。On the basis of deterministic forecasting with Muskingum routing approach,the hydrologic uncertainty processor(HUP)of Bayes ian forecasting system(BFS)was applied to obtain the probability distribution of the prediction,on which flood probabilistic forecasting of Tongguan Station was carried out. Taking the median of the probability distribution of prediction as a result of the probabilistic forecasting,it was used to compare with the deterministic forecasting. The compared results show that the forecast accuracy of probabilistic forecast is im proved,which indicates the high correcting ability in forecast of the Bayesian model. Then it investigated the probabilistic forecasting accura cy influenced by deterministic forecasting accuracy through different deterministic forecast sets. It demonstrates that the width and dispersion of probabilistic forecast interval are decreasing by improving the accuracy of deterministic forecasting. Meanwhile,the reliability of probabi listic forecast based on HUP is sensitive to random error of deterministic forecasting,but relatively insensitive to systematic error.

关 键 词:贝叶斯预报系统(BFS) 水文不确定性处理器(HUP) 洪水概率预报 潼关 

分 类 号:P338[天文地球—水文科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象