机构地区:[1]中国科学院亚热带农业生态研究所重点实验室,长沙410125 [2]湖南农业大学资源环境学院,长沙410128 [3]中国科学院环江喀斯特农业生态系统研究观测站,环江547200
出 处:《生态学报》2015年第13期4462-4472,共11页Acta Ecologica Sinica
基 金:中国科学院战略性先导科技专项(DA05050205;XDA05070404);中国科学院西部行动计划项目(KZCX2-XB3-10);国家科技支撑计划(2011BAC09B02);国家自然科学基金项目(31370485;31370623;31400412)
摘 要:基于广西11类主要树种(组)5个龄组(245株样木、345块样地)的生物量实测调查,建立了各树种(组)的生物量优化异速生长模型,探讨广西森林生态系统总生物量及不同森林类型、不同龄组、不同层次的生物量组成与分配。结果表明:(1)广西11类树种(组)叶、枝、干、根、全株生物量(除了杉树叶、桉树叶生物量)、地上-地下、胸径-树高的优化回归模型均为幂函数,经t检验均达到显著水平(P<0.05),其中11类树种(组)以全株生物量的模拟效果最好;(2)广西森林总生物量为1425.37 Tg,平均生物量为105.36 Mg/hm2,各森林类型总生物量为松树林(366.14 Tg)>硬阔(291.08 Tg)>软阔(239.75 Tg)>石山林(165.51 Tg)>杉木林(164.01 Tg)>桉树林(99.55 Tg)>栎类(46.34 Tg)>八角林(20.21 Tg)>油茶林(19.59 Tg)>竹林(13.19 Tg),均随年龄的增加而增加,各层次生物量均以乔木层占绝对优势,所占比例为78.30%—97.47%,各龄组地上生物量均大于地下生物量;(3)考虑统计学与实际应用之间的平衡及异速生长模型的可解释量、回归系数的显著性,以胸径为变量的生物量模型能有效估算广西主要树种(组)各器官及总生物量;(4)优化筛选的广西各树种(组)的地上-地下优化异速生长模型及推算的地上-地下生物量比,对于估计广西森林地下生物量具有重要参考价值。Based on biomass measurements of 11 major tree species at five stand age classes (young, middle-aged, near-mature, mature, and over-mature forests), the optimized allometric biomass of various tree species was modeled. The total biomass of forest ecosystems in Guangxi, as well as the biomass composition and contribution in various forest types for various stand ages and forest layers were investigated. The leaf, branch, stem, root, and total single-tree biomass for 11 tree species, except Cunninghamia lanceolata and Eucalyptus urophylla × grandis leaf to diameter at breast height (DBH) (D), the ratio of belowground to aboveground biomass, and the tree height to DBH ratio (D) were best fitted with a power regression model at a significance level of P 〈 0.05 using t-tests. The best fit was observed for the total single-tree biomass to DBH (D) for the 11 tree species. The total forest biomass in Guangxi was 1425.7 Tg, and the average forest biomass was 105.36 Mg/hm2. The total stand biomass of major tree species was ranked in the following order: Pinus forest (366.14 Tg) 〉 hardwood forest (291.08 Tg) 〉 softwood forest (239.75 Tg) 〉 karst forest (165.51 Tg) 〉 Cunninghamia lanceolata forest (164.01 Tg) 〉 Eucalyptus forest (99.55 Tg) 〉 Quercus forest (46.34 Tg) 〉 Octagon forest (20.21 Tg) 〉 oil-tea Camellia forest (19.59 Tg) 〉 Bamboo forest (13.19 Tg); the biomass of each forest increased with stand age. The biomass of the overstory tree layer accounted for 78.30% to 97.47% of the total forest biomass, indicating that the overstory tree layer dominated the total biomass. Moreover, the aboveground biomass was greater than the belowground biomass at various forest ages. Considering over-fitting of the statistical models, the explainable proportion of variance, and the significance of regression coefficients in the allometric models, it was demonstrated that the mathematical model of biomass, using DBH (D) as the single variable, could
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...