检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]宁夏大学数学计算机学院,宁夏银川750021
出 处:《计算机工程与科学》2015年第7期1366-1371,共6页Computer Engineering & Science
基 金:2012年度中科院西部之火人才计划;2013年度宁夏科技支撑计划;国家自然科学基金资助项目(61363054)
摘 要:针对目前水稻病害图像识别系统依赖于数码相机和计算机,缺乏便携性和实时性的问题,设计了一款基于Android手机的水稻病害图像识别系统。系统通过分析水稻稻瘟病、胡麻斑病、干尖线虫病、白叶枯病四种病害的颜色、形状、纹理特征,采用图像预处理、图像增强、图像分割、特征提取以及图像识别的处理方法,实现基于图像识别的及时准确诊断水稻病害类型的目的。实验结果表明,系统准确率可达93.78%,正检率96.22%,误检率6.22%,虚警率1.56%,平均诊断用时2.802s。该系统能有效地拍摄并诊断水稻病害,迅速、准确地给出病害防治措施。Currently,most of the rice disease image recognition systems rely on digital cameras and computers, which lack of portability and real-time features. To diagnosis rice diseases in the fields time- ly,we design a rice disease image recognition system based on Android mobile phones. We analyze the color, shape, and texture features of the following four types of diseases:rice blast, flax spot disease, dry pointed nematode,and white leaves dry disease. We use multiple methods such as image pretreatment, image segmentation, feature extraction and image recognition. Experimental results show that the accura- cy ra 1.56 nose is 93.7%, the detection rate is 96.22 %, the false detection rate is 6.22 %, the false alarm rate is ,and the average diagnosis time is 2. 802 s. The proposed system can effectively capture and diag- e types of rice disease rapidly and accurately, and it can also provide some disease control meas-ures.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28