检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安石油大学计算机学院,陕西西安710065 [2]西北工业大学电子信息学院,陕西西安710029
出 处:《电子技术应用》2015年第7期64-67,共4页Application of Electronic Technique
基 金:国家自然科学基金(61171155);陕西省自然科学基金(2012JM8010)
摘 要:高分辨距离像目标识别算法很多,但利用高分辨距离像(HRRP)稀疏特点进行识别的方法却不多。为此,提出一种基于结构划分过完备字典完成雷达一维距离像稀疏分解,进而实现目标识别的算法。该算法首先依据字典原子的结构特点对其进行划分,简化字典表述的同时减少了原子数据存储量;随后,采用遗传匹配追踪算法(GAMP)对一维距离像训练样本进行稀疏分解以获得类别字典;最后,根据类别字典分析测试样本的重构误差实现目标识别。仿真实验证明,文中算法简洁、识别率高,即便受到噪声干扰依然能稳健地识别目标。There are many radar target recognition algorithms based on high range resolution profile (HRRP), but less of them employ the sparseness of HRRP samples. Thus, an redundant dictionary and a fast sparse representation algorithm are used to implement radar target recognition here. First, a Gabor redundant dictionary was partitioned by the characteristics of the atoms in it. By doing this, the atoms storage was decreased and the dictionary was generated faster. Then, the genetic algorithm-matching pursuit algorithm(GAMP) was used to product the training samples' taxonomic dictionaries quickly. Finally, the reconstruction errors of testing samples were calculated to recognize the targets. The simulations show that this algorithm has the advantages of concise, higher recognition rate and good robustness.
关 键 词:雷达目标识别 高分辨距离像 稀疏分解 过完备字典
分 类 号:TN959.17[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7