改进型最小二乘法的RBS时间同步算法  

RBS Time Synchronization Algorithm using Improved Least Square Method

在线阅读下载全文

作  者:闫安斌 刘文怡[1,2] 石永亮[1,2] 关咏梅 

机构地区:[1]中北大学电子测试技术国家重点试验室,山西太原030051 [2]仪器科学与动态测试教育部重点试验室,山西太原030051 [3]北京宇航系统工程研究所,北京100076

出  处:《自动化仪表》2015年第7期8-11,共4页Process Automation Instrumentation

摘  要:传统最小二乘法对奇异点比较敏感。当样本中存在奇异点时,不能客观反映数据的真实分布情况;而传统最小一乘法计算量太大,不能实时处理数据。针对经典RBS算法在确定节点本地时钟之间的相对时钟漂移率和偏移值时,采用传统最小二乘法会导致时钟同步收敛速度太慢的问题,提出了一种改进型的最小二乘法。该算法能够有效地识别和剔除样本容量中的奇异点。经试验证明,该方法能够改进节点之间的时钟同步效果和收敛速度。The traditional least square method is comparatively sensitive to singular points, when singular point exists in sample, real actual distribution of the data cannot be reflected ; while the traditional least one multiplication method is too computationally intensive, data cannot be processed in real time. Aiming at classical reference-broadcast synchronization (RBS) algorithm, due todetermine the relative clock drift rate and offset value between local clock of the nodes by adopting traditional least square method may lead to the convergence speed is too slow, thus the improved least square method is proposed. With this method, the singular points in sample size can be effectively recognized and excluded. The tests prove that by using this method, clock synchronous effect and convergence speed between nodes can be greatly improved.

关 键 词:最小二乘法 最小一乘法 RBS时间同步算法 时钟漂移 时钟偏移 

分 类 号:TN92[电子电信—通信与信息系统] TH89[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象