基于PSO-SVM的小电流接地故障选线方法  被引量:5

Fault line selection in small current grounding power system based on PSO-SVM

在线阅读下载全文

作  者:董爱华[1] 张小洁[1] 

机构地区:[1]河南理工大学电气工程与自动化学院,河南焦作454000

出  处:《计算机工程与设计》2015年第7期1886-1890,共5页Computer Engineering and Design

基  金:国家自然科学基金青年基金项目(61104079)

摘  要:针对小电流接地系统,现有故障选线方法的精度不高,为此提出基于粒子群优化向量机(PSO-SVM)的选线方案。在搭建小电流接地系统仿真模型的基础上,采用Matlab进行PSO优化算法仿真实验,根据不同的接地情况获得故障时各线路零序电流,利用小波包变换(WPT)与傅里叶变换(FFT)从零序电流中提取暂态分量、谐波分量、五次谐波分量作为PSO-SVM输入特征进行训练,用训练好的SVM对测试样本行检测,得到选线结果。仿真结果表明,该方法使学习训练速度加快、自适应能力增强、选线精度提高进,且其不受接地电阻、故障距离等因素影响。In the small current grounding system,for the problem that using the existing fault line selection method can not obtain high accuracy,a solution of fault line selection based on PSO-SVM(support vector machine optimized by particle swarm optimization)was proposed.The software of Matlab was used to conduct a PSO(particle swarm optimization)algorithm simulation based on the simulation model of the small current grounding system.According to different ground conditions,each line zero sequence current was obtained,and then the methods of WPT(wavelet packet transform)and FFT(Fourier transform)were used to extract the steady-state fundamental component,steady-state fifth harmonic component,and transient energy component from the zero sequence currents,these features were taken as PSO-SVM input features for training,the SVM(support vector machine)were trained on the test samples to get selected line results.The simulation results show that the information fusion for fault line selection is reliable,effective and accurate,and it is not affected by factors such as grounding resistance and fault distance.

关 键 词:粒子群优化向量机 小电流接地 故障选线 零序电流 小波包变换 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象