采用信号子空间稀疏表示的DOA估计方法  被引量:10

DOA estimation method using sparse representation of the signal subspace

在线阅读下载全文

作  者:解虎[1] 冯大政[1] 魏倩茹[1] 

机构地区:[1]西安电子科技大学雷达信号处理国家重点实验室,陕西西安710071

出  处:《系统工程与电子技术》2015年第8期1717-1722,共6页Systems Engineering and Electronics

基  金:国家自然科学基金(61271293)资助课题

摘  要:利用目标辐射源空间分布的稀疏性,提出了一种基于稀疏表示的多快拍联合波达方向(direction of arrival,DOA)估计方法。该方法首先利用采样数据矩阵大奇异值对应的左奇异向量估计信号子空间,然后采用加权迭代最小方差方法对信号空间进行稀疏表示。与传统的角度高分辨估计方法不同,该方法没有利用样本的统计信息,因而对具有任意相关性的信号源能进行有效的波达方向估计,不需要进行去相关处理,且具有很高的分辨力及估计精度。实验表明在该方法能准确的对目标源方位进行估计,且极大地降低了稀疏表示的计算量。Using the spatial sparsity of the source signals, a direction of arrival (DOA) estimation method is proposed based on the sparse representation of multiple measurement vectors (MMV). First, the signal sub- space is estimated by taking the left singular eigenvectors of the samples matrix corresponding to the big singular eigenvalues. Then the new re-weighted iterative minimum variance (RIMV) method is adopted to the signal subspace to determine the DOA o{ the targets. In addition, since it does not utilize the statistic information like the conventional high-resolution methods do, the proposed method can effectively distinguish the signal sources with any coherence without decorrelation processing. Experimental results show that the method can exactly es- timate the DOA of source signals and bring a great computation reduction.

关 键 词:稀疏表示 波达方向估计 奇异值分解 加权迭代最小方差 多快拍 

分 类 号:TN957.5[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象