Irradiation and flame retardant effect of poly[bis(phenoxyphosphazene)] and magnesium hydroxide in LDPE composites  被引量:2

Irradiation and flame retardant effect of poly[bis(phenoxyphosphazene)] and magnesium hydroxide in LDPE composites

在线阅读下载全文

作  者:李建喜 张聪 陈涛 李林繁 李景烨 

机构地区:[1]CAS Center for Excellence on TMSR Energy System, Shanghai Institute of Applied Physics,Chinese Academy of Sciences [2]University of Chinese Academy of Sciences

出  处:《Nuclear Science and Techniques》2015年第3期57-63,共7页核技术(英文)

基  金:Supported by the"Strategic Priority Research Program"of the Chinese Academy of Sciences(No.XDA02040300)

摘  要:Poly[bis(phenoxyphosphazene)](PBPP) and magnesium hydroxide(MH) are used as a flame retardant blend with low-density polyethylene(LDPE) for the nuclear cable. This study aims to investigate the effects of PBPP in MH-LDPE blend composites on flame retardance and electron beam irradiation. The structure, morphology,and properties of the blend composites irradiated by an electron beam to different absorbed doses were characterized. The results indicated that PBPP provides lubrication during processing. As the PBPP content in the blend increases the melt flow rate at 20 phr MH, meaning the material is easier to process. The higher the PBPP content, the higher the limiting-oxygen index. The elongation at the break of the PBPP containing composites(at 50 phr MH) was evidently higher than the non-PBPP ones at different absorbed doses by electron beam irradiation. The thermogravimetric analysis results indicated that the improved mechanical property, resulting from electron-beam irradiation, could be attributed to the consumption of PBPP.Poly[bis(phenoxyphosphazene)](PBPP) and magnesium hydroxide(MH) are used as a flame retardant blend with low-density polyethylene(LDPE) for the nuclear cable. This study aims to investigate the effects of PBPP in MH-LDPE blend composites on flame retardance and electron beam irradiation. The structure, morphology,and properties of the blend composites irradiated by an electron beam to different absorbed doses were characterized. The results indicated that PBPP provides lubrication during processing. As the PBPP content in the blend increases the melt flow rate at 20 phr MH, meaning the material is easier to process. The higher the PBPP content, the higher the limiting-oxygen index. The elongation at the break of the PBPP containing composites(at 50 phr MH) was evidently higher than the non-PBPP ones at different absorbed doses by electron beam irradiation. The thermogravimetric analysis results indicated that the improved mechanical property, resulting from electron-beam irradiation, could be attributed to the consumption of PBPP.

关 键 词:共混复合材料 电子束辐照 氢氧化镁 LDPE 苯氧基 阻燃效果 磷腈 电子束照射 

分 类 号:TQ325.12[化学工程—合成树脂塑料工业] TB332[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象