检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《太阳能学报》2015年第7期1737-1742,共6页Acta Energiae Solaris Sinica
基 金:河北省自然科学基金(F2011502001)
摘 要:提出一种融入灰色关联度分析(GRA)的生物质气化焦油脱除最小二乘支持向量机(LSSVM)建模方法。该模型考虑生物质气化焦油脱除过程影响因素的多样性和不确定性,通过试验数据的GRA分析,提取气化焦油脱除过程的强相关因素作为模型训练样本,建立生物质气化焦油脱除过程GRA-LSSVM模型,可有效克服传统建模方法对所有数据样本等同处理而造成的模型精度不高的不足。对松木屑气化焦油脱除过程建模分析,验证模型的有效性和准确性。A least square support vector machine (LSSVM) modeling method based on GRA for the removal process of biomass gasification tar was put forward. The model takes the influencing factors of diversity and uncertainty in the biomass gasification tar removal process into account and through analyzing the experimental data by GRA, factors which have great influences on tar removal process are extracted to be the training sample of the model so that the GRA-LSSVM model for the biomass gasification tar removal process is established which effectively overcome the deficiency of model accuracy in traditional modeling method for all data samples equal treatment. The modeling analysis of the pine crumbs in the gasification tar removal process, verifying the effectiveness and accuracy of the model.
分 类 号:TK6[动力工程及工程热物理—生物能]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158