氦离子辐照对镍基合金硬度的影响  被引量:4

Investigation of helium irradiation induced hardening in nickel-based alloy

在线阅读下载全文

作  者:刘哲[1,2,3] 包良满[1,3] 刘可[1,2,3] 刘仁多[1,3] 叶伯年[1,3] 雷前涛[1,3] 李燕[1,3,4] 

机构地区:[1]中国科学院上海应用物理研究所嘉定园区,上海201800 [2]中国科学院大学,北京100049 [3]中国科学院核辐射与核能技术重点实验室,上海201800 [4]上海科技大学,上海200031

出  处:《核技术》2015年第7期81-89,共9页Nuclear Techniques

基  金:国家自然科学基金培育项目(No.91126012);上海市自然科学基金(No.14ZR1448300)资助

摘  要:在室温下对镍基合金进行了氦离子辐照,利用纳米压痕仪测试了微观硬度,利用慢正电子多普勒展宽谱(Doppler Broadening Spectrum,DBS)和透射电子显微镜(Transmission Electron Microscope,TEM)分析了微观缺陷,利用离子束分析弹性反冲探测(Elastic Recoil Detection,ERD)技术测量了氦的浓度深度分布。结果显示合金样品的硬度随剂量而增大,退火后合金样品硬度增量有所减小,并观测到氦泡生成。合金硬化的主要原因是由于氦离子辐照产生了1-7 nm的缺陷团簇,而退火后不稳定缺陷的回复及氦-空位复合体数量的减少造成了硬化强度减弱。Background: Hastelloy-N alloy is selected as the structural material for molten salt reactor (MSR), however, it is well-known that helium atoms play an important role in nickel-based materials after severe neutron irradiation, since they can drastically alter mechanical properties, potentially embrittle materials even at low concentration. Purpose: This study aims to understand the hardening of Hastelloy-N alloy material caused by helium irradiation. Methods: Samples were irradiated by helium ions of various energies and intensities at room temperature. After annealed at temperature of 773 K, 873 K and 973 K separately, and some typical samples annealed at 873 K were chosen as objects of investigation. Nano-indentation technique was used to obtain the hardness; elastic recoil detection (ERD) was used to detect the helium concentration; and positron annihilation spectroscopy (PAS) was used to investigate S parameter. The microstructure was characterized by transmission electron microscopy (TEM). Results: The hardness of the Hastelloy-N alloys irradiated by He+ increased with the dose whilst the S parameter first increased with irradiation dose, but decresed after reach certain incident depth. After annealing, both the hardness and the S parameters decreased. The TEM image showed lots of radiation-induced defects after irradiation. The small defects were annihilated and 1-nm small helium bubble was observed after annealing. Conclusion: The large radiation-induced defects were believed to be the causes of the hardening. While the recovery of hardening after 873 K annealing was ascribed to the annihilation of the small defects, the desorption of helium and the decreasing number of HenVm.

关 键 词:镍基合金 氦离子 辐照 硬度 

分 类 号:TL34[核科学技术—核技术及应用]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象