检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州大学大气科学学院,甘肃省干旱气候变化与减灾重点实验室,甘肃兰州730000 [2]中国人民解放军94923部队,福建武夷山354301
出 处:《地球科学进展》2015年第6期700-708,共9页Advances in Earth Science
基 金:国家自然科学基金项目“有预报误差的土壤湿度估算研究”(编号:41075074)资助
摘 要:为了定量评估模式时间关联误差对NOAH陆面模式同化表层土壤湿度观测估算土壤湿度廓线的影响,采用集合平方根滤波(En SRF)与状态增广相结合的技术,开展同时更新状态变量和订正模式偏差的观测系统模拟试验,结果表明:同化时若不对存在较大系统性偏差的模式时间关联误差进行处理,En SRF就不能有效估算土壤湿度廓线,而采用状态增广和En SRF相结合的技术,可以在更新土壤湿度时同步订正模式偏差,土壤湿度估算精度明显提高。敏感性试验进一步表明:模式偏差大小、同化时间间隔和观测误差会以不同方式对同化结果造成影响。To evaluate the impacts of time correlated error models on the estimates of soil moisture profiles with the Ensemble Square Root Filter( En SRF),an observing system simulation experiment was set up,in which the near-surface soil moisture observations were assimilated into NOAH Land Surface Model( LSM). The experiments used a combination technique of En SRF and state augmentation,in which both the model states and model errors were updated at the same time. The results showed that En SRF could not successfully estimate the soil moisture profiles,if a large model bias was directly ignored in the process of data assimilation. On the contrary,the soil moisture estimates had a large improvement,if the model errors were corrected. Furthermore,the sensitive tests showed that the value of model bias,the magnitudes of observational errors and the time intervals would all influence the estimates in the different way.
关 键 词:时间关联误差 集合平方根滤波 土壤湿度 陆面数据同化
分 类 号:P413.2[天文地球—大气科学及气象学] P461.4
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145