The Growth of Solutions of Higher Order Differential Equations with Coefficients Having the Same Order  

The Growth of Solutions of Higher Order Differential Equations with Coefficients Having the Same Order

在线阅读下载全文

作  者:Yanyan ZHAN Lipeng XIAO 

机构地区:[1]College of Mathematics and Information Science,Jiangxi Normal University

出  处:《Journal of Mathematical Research with Applications》2015年第4期387-399,共13页数学研究及应用(英文版)

基  金:Supported by the National Natural Science Foundation of China(Grant Nos.11301232;11171119);the Natural Science Foundation of Jiangxi Province(Grant No.20132BAB211009)

摘  要:In this paper, we consider the growth of solutions of some homogeneous and non- homogeneous higher order differential equations. It is proved that under some conditions for entire functions F, Aji and polynomials Pj(z), Oj(z) (j = 0, 1,..., k - 1; i = 1, 2) with degree n ≥ 1, the equation f(k) + (Ak-l,1 (z)e pk-l(z) +Ak-1,2 (z)eQk-l(z))f(x-1) +...+ (A0,1 (z)eP0(z) + A0,2(z)eQ0(z))f = F, where k ≥ 2, satisfies the properties: When F ≡ 0, all the non-zero solu- tions are of infinite order; when F ≠ 0, there exists at most one exceptional solution f0 with finite order, and all other solutions satisfy -λ(f) = A(f) = σ(f) = ∞.In this paper, we consider the growth of solutions of some homogeneous and non- homogeneous higher order differential equations. It is proved that under some conditions for entire functions F, Aji and polynomials Pj(z), Oj(z) (j = 0, 1,..., k - 1; i = 1, 2) with degree n ≥ 1, the equation f(k) + (Ak-l,1 (z)e pk-l(z) +Ak-1,2 (z)eQk-l(z))f(x-1) +...+ (A0,1 (z)eP0(z) + A0,2(z)eQ0(z))f = F, where k ≥ 2, satisfies the properties: When F ≡ 0, all the non-zero solu- tions are of infinite order; when F ≠ 0, there exists at most one exceptional solution f0 with finite order, and all other solutions satisfy -λ(f) = A(f) = σ(f) = ∞.

关 键 词:order of growth HYPER-ORDER exponent of convergence of zero sequence differ-ential equation 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象