机构地区:[1]City College, Wuhan University of Science and Technology [2]School of Physics and Technology/Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education,Wuhan University
出 处:《Wuhan University Journal of Natural Sciences》2015年第3期255-261,共7页武汉大学学报(自然科学英文版)
基 金:Supported by the National Natural Science Foundation of China(51172166);the Ph.D.Programs Foundation of City College,Wuhan University of Science and Technology(2014CYBSKY003)
摘 要:CaCu3Ti4O12 ceramic with a giant dielectric constant was synthesized by sol-gel method and sintered in three different sintering conditions: 1 035 ℃ for 48 h, 1 080 ℃ for 3 h and 48 h. The phase of the ceramics, the element distribution, the valance state of Ti ions at grain boundaries, and the electrical properties were characterized via X-ray diffraction(XRD), energy dispersive X-ray analysis(EDAX), X-ray photoelectron spectroscopy(XPS), electrical conduction and dielectric measurement. The results demonstrate that the grain-boundary microstructure and the electrical properties are influenced by sintering conditions: 1 By raising sintering temperature, the Cu-rich and Ti-poor grain boundary was formed and grain resistivity was decreased. 2 By prolonging sintering time, the content of Ti3+ near the grain boundary increased, leading to the decrease of the grain-boundary resistivity and the increase of the activation energy at grain boundary. The ceramic, sintering at 1 080 ℃ for 48 h, exhibited a small grain resistivity(60.5 *cm), a large grain-boundary activation energy(0.42 e V), and a significantly enhanced dielectric constant(close to 1×105 at a low frequency of 1×103 Hz). The results of electrical properties accord with the internal boundary layer capacitor model for explaining the giant dielectric constant observed in Ca Cu3Ti4O12 ceramics.CaCu3Ti4O12 ceramic with a giant dielectric constant was synthesized by sol-gel method and sintered in three different sintering conditions: 1 035 ℃ for 48 h, 1 080 ℃ for 3 h and 48 h. The phase of the ceramics, the element distribution, the valance state of Ti ions at grain boundaries, and the electrical properties were characterized via X-ray diffraction(XRD), energy dispersive X-ray analysis(EDAX), X-ray photoelectron spectroscopy(XPS), electrical conduction and dielectric measurement. The results demonstrate that the grain-boundary microstructure and the electrical properties are influenced by sintering conditions: 1 By raising sintering temperature, the Cu-rich and Ti-poor grain boundary was formed and grain resistivity was decreased. 2 By prolonging sintering time, the content of Ti3+ near the grain boundary increased, leading to the decrease of the grain-boundary resistivity and the increase of the activation energy at grain boundary. The ceramic, sintering at 1 080 ℃ for 48 h, exhibited a small grain resistivity(60.5 *cm), a large grain-boundary activation energy(0.42 e V), and a significantly enhanced dielectric constant(close to 1×105 at a low frequency of 1×103 Hz). The results of electrical properties accord with the internal boundary layer capacitor model for explaining the giant dielectric constant observed in Ca Cu3Ti4O12 ceramics.
关 键 词:CaCu3Ti4O12 sintering microstructure electrical conduction dielectric
分 类 号:TQ174.758[化学工程—陶瓷工业] TB383[化学工程—硅酸盐工业]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...