Enhanced biological nutrient removal in modified carbon source division anaerobic anoxic oxic process with return activated sludge pre-concentration  被引量:8

采用改进型碳源分流和回流活性污泥预浓缩AAO工艺提高生物营养去除效果的研究(英文)

在线阅读下载全文

作  者:鲁骎 毋海燕 李昊岩 杨殿海 

机构地区:[1]State Key Lab. of Pollution Control and Resources Reuse, College of Environmental Sciences and Engineering, Tongji University [2]Xylem (China) Co., Ltd. [3]Shanghai Plant Biomass Co., Ltd.

出  处:《Chinese Journal of Chemical Engineering》2015年第6期1027-1034,共8页中国化学工程学报(英文版)

基  金:Supported by the Major Science and Technology Program for Water Pollution Contro and Treatment-Crucial Technology Research and Engineering Sample Subject on Municipa Wastewater Treatment Process Updated to Higher Drainage Standard(2008ZX07317-02);Wuhan Water Pollution Control and the Water Environment Administer Technology and Synthetic Sample Project in Cities and Towns(2008ZX07317)

摘  要:A pilot-scale modified carbon source division anaerobic anoxic oxic(AAO) process with pre-concentration of returned activated sludge(RAS) was proposed in this study for the enhanced biological nutrient removal(BNR) of municipal wastewater with limited carbon source. The influent carbon source was fed in step while a novel RAS pre-concentration tank was adopted to improve BNR efficiency, and the effects of an influent carbon source distribution ratio and a RAS pre-concentration ratio were investigated. The results show that the removal efficiency of TN is mainly influenced by the carbon source distribution ratio while the TP removal relies on the RAS pre-concentration ratio. The optimum carbon source distribution ratio and RAS pre-concentration ratio are 60% and 50%, respectively, with an inner recycling ratio of 100% under the optimum steady operation of pilot test, reaching an average effluent TN concentration of 9.8 mg·L-1with a removal efficiency of 63% and an average TP removal efficiency of 94%. The mechanism of nutrient removal is discussed and the kinetics is analyzed. The results reveal that the optimal carbon source distribution ratio provides sufficient denitrifying carbon source to each anoxic phase, reducing nitrate accumulation while the RAS pre-concentration ratio improves the condition of anaerobic zone to ensure the phosphorus release due to less nitrate in the returned sludge. Therefore, nitrifying bacteria, denitrifying bacteria and phosphorus accumulation organisms play an important role under the optimum condition, enhancing the performance of nutrient removal in this test.A pilot-scale modified carbon source division anaerobic anoxic oxic(AAO) process with pre-concentration of returned activated sludge(RAS) was proposed in this study for the enhanced biological nutrient removal(BNR) of municipal wastewater with limited carbon source. The influent carbon source was fed in step while a novel RAS pre-concentration tank was adopted to improve BNR efficiency, and the effects of an influent carbon source distribution ratio and a RAS pre-concentration ratio were investigated. The results show that the removal efficiency of TN is mainly influenced by the carbon source distribution ratio while the TP removal relies on the RAS pre-concentration ratio. The optimum carbon source distribution ratio and RAS pre-concentration ratio are 60% and 50%, respectively, with an inner recycling ratio of 100% under the optimum steady operation of pilot test, reaching an average effluent TN concentration of 9.8 mg·L-1with a removal efficiency of 63% and an average TP removal efficiency of 94%. The mechanism of nutrient removal is discussed and the kinetics is analyzed. The results reveal that the optimal carbon source distribution ratio provides sufficient denitrifying carbon source to each anoxic phase, reducing nitrate accumulation while the RAS pre-concentration ratio improves the condition of anaerobic zone to ensure the phosphorus release due to less nitrate in the returned sludge. Therefore, nitrifying bacteria, denitrifying bacteria and phosphorus accumulation organisms play an important role under the optimum condition, enhancing the performance of nutrient removal in this test.

关 键 词:Modified AAO process Carbon source distribution ratio Returned activated sludge pre-concentration Biological nutrient removal 

分 类 号:X703.1[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象