基于稀疏重建的MIMO-OTH雷达多模杂波抑制算法  被引量:3

Multi-mode clutter suppression algorithm of MIMO-OTH radar based on sparse reconstruction

在线阅读下载全文

作  者:窦道祥 李茂[1] 何子述[1] 

机构地区:[1]电子科技大学电子工程学院,成都611731

出  处:《航空学报》2015年第7期2310-2318,共9页Acta Aeronautica et Astronautica Sinica

基  金:国家自然科学基金(61032010;61201280)~~

摘  要:针对由多模传播引起的多普勒扩展杂波(SDC)严重影响天波超视距雷达(OTHR)对慢速船舰目标的检测这一问题,在基于多输入多输出体制的新一代天波超视距(MIMO-OTH)雷达系统下,利用空域信息抑制多模SDC。传统处理方法需要目标角度先验信息,而在实际中,该信息往往很难获得。为此,提出一种新的基于稀疏重建的多模杂波抑制算法。该算法将二维的稀疏角度搜索转变为一维的角度搜索,使运算量大大降低,且估计出的收发角(DOA-DOD)自动配对,同时可获得各个传播路径下信号的时间多普勒信息,达到了理想的MIMO-OTH雷达多模杂波抑制效果。仿真结果证明了所提算法的有效性。Spread-Doppler clutter (SDC) caused by multi-mode propagation seriously affects the over-the-horizon radar (OTHR) detection performance for slow ships. To solve this problem, we propose to suppress multi-mode SDC using spatial information in the multiple-input multiple-output over-the-horizon (MIMO-OTH) radar system. Traditional processing algorithms need priori information of the target direction. However, it is often not readily available. And the clutter suppression effect could be unsatisfactory. In this paper, we propose a novel multi-mode clutter suppression algorithm based on the sparse signal reconstruction technology. The proposed algorithm only requires the dictionary for one-dimensional angle, which reduces the computational complexity compared to the conventional method using dictionary for two-dimensional angle. The estimated direction-of-departure (AOA-DOD) and direction-of-arrival (AOA-DOA) can be automatically paired. At the same time, we can obtain the time-Doppler information for the signal under each propagation path. The ideal MIMO-OTH radar multi-mode clutter suppression effect is obtained. Simulation results verify the effectiveness of the proposed algorithm.

关 键 词:MIMO-OTH雷达 多模传播 杂波抑制 DOD估计 DOA估计 稀疏重建 

分 类 号:V557.5[航空宇航科学与技术—人机与环境工程] TN958[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象