最优运动员身体特征的寻优筛选挖掘建模  被引量:1

The Best Football Athletes Physical Characteristics Optimization Selection Mining Modeling

在线阅读下载全文

作  者:尹志琼[1] 

机构地区:[1]西昌学院体育学院,四川西昌6150022

出  处:《科技通报》2015年第7期190-192,196,共4页Bulletin of Science and Technology

摘  要:研究最优运动员身体特征的寻优筛选挖掘方法。对最优运动员身体特征的寻优挖掘,可为运动员的选拔提供数据参考,而由于运动员的身体特征具有隐秘性,特征数据采集过程较为复杂,采用传统的方法进行筛选挖掘,得到的效果往往不够理想,且需要浪费大量的时间与人力。为此,提出基于人工免疫的组合优化子空间算法的最优运动员身体特征的寻优筛选挖掘方法。依据组合子空间的相关理论,获得子空间的最优鉴别向量,抽取不同运动员的个体特征形成特征集合,从而实现特征模型的构建,依据人工免疫算法,进行最优运动员身体特征的寻优搜索,直至输出最优值,完成最优运动员身体特征的寻优筛选挖掘。实验结果表明,采用改进算法进行最优运动员身体特征的挖掘,能够提高挖掘效率与准确性,具有显著的优势。Research the best football athletes physical characteristics optimization selection of mining method. Of the best football player physical characteristics, the optimization of mining can provide reference data for football player selection, due to the physical characteristics of soccer player with confidentiality, characteristics of the data collection process is relatively complex, filtered by traditional method of mining, the effect is often not ideal, and need to waste a lot of time and manpower. Therefore, based on the combination of the artificial immune optimization subspace algorithm is the best football player physical characteristics optimization selection of mining method. Based on the combination of subspace related theory, get the optimal identification of vector subspace, extracting individual features formed set of different athletes, so as to realize the construction of characteristic model, based on artificial immune algorithm, and carries on the optimal athletes physical characteristics optimization search, until the optimal output value, accomplish the best football player physical characteristics optimization selection of mining. The experimental results show that the improved algorithm to the optimal football player physical characteristics of digging, can improve the mining efficiency and accuracy, and has significant advantages.

关 键 词:运动员 特征挖掘 组合子空间 人工免疫算法 

分 类 号:TP225[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象