景谷县思茅松人工林乔木碳储量空间分异研究  被引量:2

Spatial differentiation characters of carbon storage for Pinus kesiya var.langbianensis plantations in Jinggu County,China

在线阅读下载全文

作  者:徐婷婷[1] 舒清态[1] 欧光龙[1] 胥辉[1] 

机构地区:[1]西南林业大学,云南昆明650224

出  处:《河北农业大学学报》2015年第4期44-49,共6页Journal of Hebei Agricultural University

基  金:林业公益性行业科研专项(201404309);国家自然科学基金(31460194;31060114)

摘  要:根据120株实测思茅松生物量数据建立生物量估测模型,以2006年景谷县森林资源二类调查数据、DEM为数据源,使用ArcGIS软件分析思茅松人工林碳储量的空间分异特征。结果表明:1)思茅松单木生物量模型以胸径和树高作为自变量的幂函数模型精度最高,决定系数为0.952 8,估测精度为85.4%,均方根误差为14.81,可用来进行思茅松生物量估测;2)思茅松人工林乔木碳储量集中分布于海拔1 000~2 000m,各海拔区间的碳密度相差很小;研究区碳储量集中分布在缓坡、斜坡和陡坡,碳密度在险坡最大;碳储量在各个坡向分布比较均匀(除平地外),碳密度在阴坡上最大。不同龄级思茅松人工林乔木碳储量在空间上呈现不同变化特征。Biomass estimation models were established based on biomass of 120 sampling Pinus kesiyavar.langbianensis,and spatial differentiation of carbon storage was analyzed by ArcGIS software using 2006 forest resource inventory data(FRI),digital elevation model(DEM)data.The results showed:1)the power function model with both variables(diameter at breast height and tree height)can be used to estimate the forest biomass because of its highest precision,and the determination coefficient(R2)was 0.952 8,prediction precision(P)was85.4%,and the root mean square error(RMSE)was 14.81.2)Tree carbon storage of Pinus kesiyavar.langbianensis plantations was concentrated in 1 000-2 000 maltitude class,and the difference of carbon density for each class was small.Carbon stocks mainly distributed on mild slope,slope and steep slope positions,and carbon density on risk slope was the maximum.Carbon stocks distributed evenly in each aspect of slope(Except ground outside),and carbon density on shady slope was the maximum.Moreover,spatial differentiation of carbon stocks for Pinus kesiyavar.langbianensis plantations showed different change characters fordifferent age classes.

关 键 词:思茅松 人工林 碳储量 空间分异 

分 类 号:S791.257[农业科学—林木遗传育种] S727.1[农业科学—林学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象