检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wen CHANG Jie ZHANG Bin ZHU
机构地区:[1]Department of Mathematical Sciences, Tsinghua University [2]School of Mathematics and Statistics, Beijing institute of technology
出 处:《Acta Mathematica Sinica,English Series》2015年第9期1508-1516,共9页数学学报(英文版)
基 金:supported by National Natural Science Foundation of China(Grant No.11131001);supported by BIT Basic Scientific Research Grant(Grant No.3170012211408)
摘 要:We consider a Krull-Schmidt, Hom-finite, 2-Calabi Yau triangulated category with a basic rigid object T, and show a bijection between the set of isomorphism classes of basic rigid objects in the finite presented category pr T of T and the set of isomorphism classes of basic T-rigid pairs in the module category of the endomorphism algebra Endc(T)op. As a consequence, basic maximal objects in prT are one-to-one correspondence to basic support τ-tilting modules over Endc(T)op. This is a generalization of correspondences established by Adachi-Iyama-Reiten.We consider a Krull-Schmidt, Hom-finite, 2-Calabi Yau triangulated category with a basic rigid object T, and show a bijection between the set of isomorphism classes of basic rigid objects in the finite presented category pr T of T and the set of isomorphism classes of basic T-rigid pairs in the module category of the endomorphism algebra Endc(T)op. As a consequence, basic maximal objects in prT are one-to-one correspondence to basic support τ-tilting modules over Endc(T)op. This is a generalization of correspondences established by Adachi-Iyama-Reiten.
关 键 词:Rigid object maximal rigid object τ-rigid object finite presented category
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.55.178