On Support τ-tilting Modules over Endomorphism Algebras of Rigid Ob jects  被引量:2

On Support τ-tilting Modules over Endomorphism Algebras of Rigid Ob jects

在线阅读下载全文

作  者:Wen CHANG Jie ZHANG Bin ZHU 

机构地区:[1]Department of Mathematical Sciences, Tsinghua University [2]School of Mathematics and Statistics, Beijing institute of technology

出  处:《Acta Mathematica Sinica,English Series》2015年第9期1508-1516,共9页数学学报(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.11131001);supported by BIT Basic Scientific Research Grant(Grant No.3170012211408)

摘  要:We consider a Krull-Schmidt, Hom-finite, 2-Calabi Yau triangulated category with a basic rigid object T, and show a bijection between the set of isomorphism classes of basic rigid objects in the finite presented category pr T of T and the set of isomorphism classes of basic T-rigid pairs in the module category of the endomorphism algebra Endc(T)op. As a consequence, basic maximal objects in prT are one-to-one correspondence to basic support τ-tilting modules over Endc(T)op. This is a generalization of correspondences established by Adachi-Iyama-Reiten.We consider a Krull-Schmidt, Hom-finite, 2-Calabi Yau triangulated category with a basic rigid object T, and show a bijection between the set of isomorphism classes of basic rigid objects in the finite presented category pr T of T and the set of isomorphism classes of basic T-rigid pairs in the module category of the endomorphism algebra Endc(T)op. As a consequence, basic maximal objects in prT are one-to-one correspondence to basic support τ-tilting modules over Endc(T)op. This is a generalization of correspondences established by Adachi-Iyama-Reiten.

关 键 词:Rigid object maximal rigid object τ-rigid object finite presented category 

分 类 号:O153[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象