Convergence Rate of the Asymmetric Deffuant-Weisbuch Dynamics  被引量:4

Convergence Rate of the Asymmetric Deffuant-Weisbuch Dynamics

在线阅读下载全文

作  者:ZHANG Jiangbo CHEN Ge 

机构地区:[1]The Faculty of Science, Southwest Petroleum University [2]Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences

出  处:《Journal of Systems Science & Complexity》2015年第4期773-787,共15页系统科学与复杂性学报(英文版)

基  金:supported by the Young Scholars Development Fund of Southwest Petroleum University(SWPU)under Grant No.201499010050;the Scientific Research Starting Project of SWPU under Grant No.2014QHZ032;the National Natural Science Foundation of China under Grant No.61203141;the National Key Basic Research Program of China(973 Program)under Grant No.2014CB845301/2/3

摘  要:This paper considers the convergence rate of an asymmetric Deffuant-Weisbuch model.The model is composed by finite n interacting agents.In this model,agent i’s opinion is updated at each time,by first selecting one randomly from n agents,and then combining the selected agent j’s opinion if the distance between j’s opinion and i’s opinion is not larger than the confidence radiusε0.This yields the endogenously changing inter-agent topologies.Based on the previous result that all agents opinions will converge almost surely for any initial states,the authors prove that the expected potential function of the convergence rate is upper bounded by a negative exponential function of time t when opinions reach consensus finally and is upper bounded by a negative power function of time t when opinions converge to several different limits.

关 键 词:Convergence rute Deffuant-Weisbuch model multi-agent systems opinion dynamics. 

分 类 号:O313[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象