检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:毛琳琳[1] 张群飞[1] 黄建国[1] 史文涛[1] 韩晶[1]
出 处:《电子与信息学报》2015年第8期1886-1891,共6页Journal of Electronics & Information Technology
基 金:国家自然科学基金(61271415)资助课题
摘 要:针对经典高分辨波达方位(DOA)估计方法在低信噪比下分辨性能较差的问题,该文提出一种适用于主动探测系统的基于互相关矩阵的改进多重信号分类(MUSIC)高分辨方位估计方法(I-MUSIC)。该方法首先利用主动声呐发射信号已知的特性,将发射信号与阵元接收信号进行互相关,利用互相关序列形成新的空域协方差矩阵,再进行特征分解。理论分析表明,互相关处理在抑制噪声的同时保留了阵元之间的相位信息,可以得到比MUSIC方法更准确的子空间划分,进而提高低信噪比方位估计性能。在此基础上,提出一种基于相关时间门限的改进MUSIC高分辨方位估计(T-MUSIC)方法,通过对互相关序列设置时间门限进一步提高方位估计信噪比。仿真结果表明,与MUSIC方法相比,I-MUSIC与T-MUSIC可以分别使低信噪比时的估计性能提高3 d B和6 d B,相应平均估计误差分别为原方法的77%和53%。在阵元间接收噪声存在相关性时,T-MUSIC与I-MUSIC方法相比可获得8 d B的估计增益,估计性能更优。I-MUSIC与T-MUSIC应用于多目标主动探测,可大幅提高探测系统在低信噪比下的方位估计性能。In view of the poor performance of traditional Direction of Arrival (DOA) methods at low signal-to-noise ratios, an improved MUltiple Signal Classification (MUSIC) algorithm for DOA estimation applied to active detection system based on covariance matrix decomposition of cross-correlation (I-MUSIC) is proposed. Exploiting the transmission feature of active sonar, cross-correlation sequence between the transmitted signal and the array output is formulated. The spatial covariance matrix is then constructed from the sequence. Then matrix decomposition is implemented over the new spatial covariance matrix to estimate the DOA. It is proved that cross-correlation can suppress noise while preserving the phase information between array elements, which facilitate the subspace separation at low SNRs. Furthermore, another novel method based on correlation Time threshold (T-MUSIC) is proposed to further improve the DOA performance. Simulation results indicate that I-MUSIC and T-MUSIC can obtain a performance gain of 3 dB and 6 dB, with the estimate error being 77% and 53% of the original method respectively. Due to data selection via time threshold, T-MUSIC is not appreciably affected by noise, and thus outperforms IM-MUISC for 8 dB at low SNRs. I-MUSIC and T-MUSIC can improve the DOA performance at low SNRs significantly if applied to active multi-target detection system.
关 键 词:信号处理 波达方位估计 互相关 协方差矩阵 多重信号分类
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.79