基于空时稀疏表示的红外小目标检测算法  被引量:2

Dim Moving Target Detection Algorithm Based on Spatial-temporal Sparse Representation

在线阅读下载全文

作  者:李正周[1] 侯倩[1] 戴真[1] 付红霞[1] 葛丰增 金钢[2] 

机构地区:[1]重庆大学通信工程学院,重庆400044 [2]中国空气动力研究与发展中心,四川绵阳621000

出  处:《兵工学报》2015年第7期1273-1279,共7页Acta Armamentarii

基  金:国家自然科学基金项目(61071191);中国科学院光束控制重点实验室基金项目(2014LBC005);中国博士后基金项目(2014M550455);重庆博士后科研项目特别基金项目(XM201489);中央高校基本科研业务费专项资金项目(106112013CDJZR160007;106112014CDJZR165502);2013年重庆高校创新团队建设计划项目(KJTD201331)

摘  要:提出了一种基于过完备空时字典及其稀疏表示的红外小弱目标运动检测算法。采用K奇异值分解算法学习连续多帧图像的运动信息和形态特征,构建自适应形态过完备空时字典;利用高斯运动模型检验自适应形态过完备空时字典,将其划分为能分别描述目标与背景的目标过完备空时字典和背景过完备空时字典;将连续多帧图像分别在目标过完备空时字典和背景过完备空时字典上稀疏分解,利用几个最大稀疏系数及其空时原子重构信号,增强二者残差来检测小目标信号。实验结果表明,该过完备空时字典不仅能同时描述目标与背景的运动信息和形态特征,极大地提高信号表示的稀疏程度,而且能有效增强目标与背景的特征差异,提高小运动目标的探测能力。A dim moving target detection algorithm based on over-complete spatial-temporal dictionary and sparse representation is proposed. A spatial-temporal adaptive morphological over-complete dictionary is trained and constructed according to infrared image sequence. It can represent the motion information and morphological feature of target and background clutter. The spatial-temporal morphological over-complete dictionary is subdivided into two categories: target over-complete spatial-temporal dictionary for describing moving target,and background over-complete spatial-temporal dictionary for embedding background. The criteria adopted to distinguish the target spatial-temporal redundant dictionary from the background spatial-temporal redundant dictionary is that the atom in target over-complete spatial-temporal dictionary could be decomposed more sparsely over Gaussian over-complete spatial-temporal dictionary. Subsequently,the image sequence is decomposed on the target and background over-complete spatial-temporal dictionaries,respectively. The dim moving target and background clutter can be sparsely decomposed on their corresponding over-complete spatial-temporal dictionary,yet it couldn't be sparsely decomposedon their background over-complete spatial-temporal dictionary. Therefore,the target and background clutter would be reconstructed effectively by prescribed number of atoms with maximum sparse coefficients in their corresponding over-complete spatial-temporal dictionary,and their residuals would differ so visibly to distinguish target from background clutter. The results show that the proposed approach not only could improve the sparsity more efficiently for dim target image sequence,but also could improve the performance of small target detection.

关 键 词:信息处理技术 小弱目标检测 空时超完备字典 目标空时字典 背景空时字典 信号稀疏重构 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象