一种基于压缩Fisher向量的目标检索方法  

An Object Retrieval Method Based on Compressed Fisher Vectors

在线阅读下载全文

作  者:刘辛[1] 杨素锦[1] 杨俊[2] 

机构地区:[1]周口师范学院,河南周口466001 [2]中山大学,广州510006

出  处:《火力与指挥控制》2015年第7期37-42,共6页Fire Control & Command Control

基  金:国家自然科学基金资助项目(u1204618)

摘  要:当前,视觉词典法(Bo VW,Bag of Visual Words)是解决目标检索问题的主要方法,但传统的Bo VW方法具有词典生成时间效率低、检索内存消耗大等问题。针对这些问题,提出了基于压缩Fisher向量的目标检索方法,该方法首先将Fisher核机制用于目标检索,它能自动降低目标图像背景带来的不利影响,然后,采用位置敏感哈希(LSH,Locality Sensitive Hashing)对Fisher向量进行压缩编码以降低计算复杂度和内存开销,使之适用于大规模数据库。实验结果表明,新方法只用几百比特就能表征一幅图像内容,对大规模目标检索有很好的适用性,且较之当前主流的压缩视觉词典法具有更高的准确率。The problem of object retrieval has been traditionally addressed with the bag of visual words(Bo VW). But there are several problems existing in the conventional bag of visual words methods,such as the low time efficiency and large memory consumption. In this article,an object retrieval method based on compressed Fisher vectors is proposed for the above problems. Firstly,it is shown that show why the Fisher representation is well-suited to the object retrieval problem: it can automatically reduce the adverse effect of the object?from background. Then,Locality Sensitive Hashing(LSH)is used to compress Fisher vectors to reduce their memory footprint and computational costs and make it suitable for large scale database.Experimental results indicate that compressed Fisher vectors perform very well using as little as a few hundreds of bits per image,and significantly better than a very recent compressed Bo VW approach.

关 键 词:目标检索 视觉词典法 压缩Fisher向量 位置敏感哈希 

分 类 号:TJ630[兵器科学与技术—武器系统与运用工程] TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象