基于LEAST的高速网络大流检测算法  被引量:3

An Elephant Flow Identifying and Measuring Algorithm Based on LEAST in High-speed Network Environment

在线阅读下载全文

作  者:徐敏[1] 夏靖波[1] 申健[1] 陈珍[1] 

机构地区:[1]空军工程大学信息与导航学院,西安710077

出  处:《空军工程大学学报(自然科学版)》2015年第4期62-65,共4页Journal of Air Force Engineering University(Natural Science Edition)

基  金:陕西省自然科学基金资助项目(2012JZ8005)

摘  要:针对大流漏检率过高,占用SRAM过大问题,提出了基于最少(LEAST)改进型大流检测算法。主要思想:利用LEAST淘汰机制将小流丢弃使得大流能够被保护,采用窗口-储备策略解决检测大流的公平性问题。通过相关组织所提供的实际互联网数据进行了实验比较,结果显示:与现有算法相比,新算法具有更高的测量准确性,平均大流漏检率降低至0%~0.13%。In high-speed network environment, ifs very important to extract elephant flow timely and accu- rately for cognizing behavior and law of network. In order to reduce the elephant flow measurement miss- ing rate and overmuch occupation of SRAM, an improved algorithm based on LEAST is proposed. By u- sing LEAST elimination mechanism for discarding the mice flow, the elephant flow can be protected. And Window-Reserve strategy is adopted to ensure the fairness of identifying and measuring elephant flow. Fi- nally, through the comparison between the simulation results and the actual flow data, the result shows that the new algorithm has a higher measurement accuracy and is more practicable, and the elephant flow on the average measurement missing rate is reduced to 0%-0.13%.

关 键 词:网络测量 大流流量 LEAST淘汰机制 窗口-储备策略 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象