IBN Rings and Orderings on Grothendieck Groups  被引量:6

IBN Rings and Orderings on Grothendieck Groups

在线阅读下载全文

作  者:Tong Wenting Department of Mathematics Nanjing University Nanjing,210008 China 

出  处:《Acta Mathematica Sinica,English Series》1994年第3期225-230,共6页数学学报(英文版)

基  金:Supported by National Nature Science Foundation of China.

摘  要:Let R be a ring with an identity element.R∈IBN means that R<sup>m</sup>■R<sup>n</sup> implies m=n,R ∈IBN<sub>1</sub> means that R<sup>m</sup> ■R<sup>n</sup>⊕K implies m≥n,and R ∈IBN<sub>2</sub> means that R<sup>m</sup>■R<sup>m</sup>⊕K implies K=0.In this paper we give some characteristic properties of IBN<sub>1</sub> and IBN<sub>2</sub>,with orderings o the Grothendieck groups.In addition,we obtain the following results:(1)If R ∈IBM<sub>1</sub> and all finitely generated projective left R-modules are stably free,then the Grothendieck group K<sub>o</sub>(R)is a totally ordered abelian group.(2)If the pre-ordering of the Grothendieck group K<sub>o</sub>(R)of a ring R is a partial ordering,then R ∈IBM<sub>1</sub> or K<sub>o</sub>(R)=0.Let R be a ring with an identity element.R∈IBN means that R<sup>m</sup>■R<sup>n</sup> implies m=n,R ∈IBN<sub>1</sub> means that R<sup>m</sup> ■R<sup>n</sup>⊕K implies m≥n,and R ∈IBN<sub>2</sub> means that R<sup>m</sup>■R<sup>m</sup>⊕K implies K=0.In this paper we give some characteristic properties of IBN<sub>1</sub> and IBN<sub>2</sub>,with orderings o the Grothendieck groups.In addition,we obtain the following results:(1)If R ∈IBM<sub>1</sub> and all finitely generated projective left R-modules are stably free,then the Grothendieck group K<sub>o</sub>(R)is a totally ordered abelian group.(2)If the pre-ordering of the Grothendieck group K<sub>o</sub>(R)of a ring R is a partial ordering,then R ∈IBM<sub>1</sub> or K<sub>o</sub>(R)=0.

关 键 词:IBN Rings and Orderings on Grothendieck Groups MATH PSF 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象