检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhu Fuzu
机构地区:[1]Department of Mathematics East China Normal University Shanghai
出 处:《Acta Mathematica Sinica,English Series》1995年第3期291-299,共9页数学学报(英文版)
摘 要:In this paper, for any given natural numbers n and a, we can construct explicitly positive definite indecomposable integral Hermitian forms of rank n over Q(-3<sup>1/2</sup>) with discriminant a, with the following ten exceptions: n=2, a=1,2,4, 10; n=3, a=1,2,5; n=4, a=1; n=5, a=1; and n=7, a=1. In the exceptional cases there are no forms with the desired properties. The method given here can be applied to solving the problem of constructing indecomposable positive definite Hermitian R<sub>m</sub>-lattices of any given rank n and discriminant a, where R<sub>m</sub> is the ring of algebraic integers in an imaginary quadratic field Q(-m<sup>1/2</sup>) with class number unity.In this paper, for any given natural numbers n and a, we can construct explicitly positive definite indecomposable integral Hermitian forms of rank n over Q(-3<sup>1/2</sup>) with discriminant a, with the following ten exceptions: n=2, a=1,2,4, 10; n=3, a=1,2,5; n=4, a=1; n=5, a=1; and n=7, a=1. In the exceptional cases there are no forms with the desired properties. The method given here can be applied to solving the problem of constructing indecomposable positive definite Hermitian R<sub>m</sub>-lattices of any given rank n and discriminant a, where R<sub>m</sub> is the ring of algebraic integers in an imaginary quadratic field Q(-m<sup>1/2</sup>) with class number unity.
关 键 词:Indecomposable lattics (form) Unimodular lattice (form) Minimum of a lattice Irreducible vector
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43