Convex Functions, Subdifferentiability and Renormings  被引量:3

Convex Functions, Subdifferentiability and Renormings

在线阅读下载全文

作  者:Cheng Lixin Wu Congxin Xue Xiaoping Yao Xiaobo Nankai Institute of Mathematics, Nankai University, Tianjin 300071, China Department of Mathematics, Harbin Institute of Technology, Harbin 150006, China 

出  处:《Acta Mathematica Sinica,English Series》1998年第1期47-56,共10页数学学报(英文版)

基  金:NSFC

摘  要:This paper through discussing subdifferentiability and convexity of convex functions shows that a Banach space admits an equivalent uniformly [locally uniformly, strictly] convex norm if and only if there exists a continuous uniformly [locally uniformly, strictly] convex function on some nonempty open convex subset of the space and presents some characterizations of super-reflexive Banach spaces.This paper through discussing subdifferentiability and convexity of convex functions shows that a Banach space admits an equivalent uniformly [locally uniformly, strictly] convex norm if and only if there exists a continuous uniformly [locally uniformly, strictly] convex function on some nonempty open convex subset of the space and presents some characterizations of super-reflexive Banach spaces.

关 键 词:Convex function Differentiabilit RENORMING Uniformly convex Banach space 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象