L^p Approximation Capability of RBF Neural Networks  被引量:1

L^p Approximation Capability of RBF Neural Networks

在线阅读下载全文

作  者:Dong Nan Wei Wu Jin Ling Long Yu Mei Ma Lin Jun Sun 

机构地区:[1]Applied Mathematics Department,Dalian University of Technology,Dalian,116024,P.R.China [2]Department of Computer,Dalian Nationalities University,Dalian,116600,P.R.China

出  处:《Acta Mathematica Sinica,English Series》2008年第9期1533-1540,共8页数学学报(英文版)

基  金:the National Natural Science Foundation of China (10471017)

摘  要:L p approximation capability of radial basis function (RBF) neural networks is investigated. If g: R +1 → R 1 and $g(\parallel x\parallel _{R^n } )$g(\parallel x\parallel _{R^n } ) ∈ L loc p (R n ) with 1 ≤ p < ∞, then the RBF neural networks with g as the activation function can approximate any given function in L p (K) with any accuracy for any compact set K in R n , if and only if g(x) is not an even polynomial.L p approximation capability of radial basis function (RBF) neural networks is investigated. If g: R +1 → R 1 and $g(\parallel x\parallel _{R^n } )$g(\parallel x\parallel _{R^n } ) ∈ L loc p (R n ) with 1 ≤ p < ∞, then the RBF neural networks with g as the activation function can approximate any given function in L p (K) with any accuracy for any compact set K in R n , if and only if g(x) is not an even polynomial.

关 键 词:neural networks radial basis function L p approximation capability 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象