检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Dong Nan Wei Wu Jin Ling Long Yu Mei Ma Lin Jun Sun
机构地区:[1]Applied Mathematics Department,Dalian University of Technology,Dalian,116024,P.R.China [2]Department of Computer,Dalian Nationalities University,Dalian,116600,P.R.China
出 处:《Acta Mathematica Sinica,English Series》2008年第9期1533-1540,共8页数学学报(英文版)
基 金:the National Natural Science Foundation of China (10471017)
摘 要:L p approximation capability of radial basis function (RBF) neural networks is investigated. If g: R +1 → R 1 and $g(\parallel x\parallel _{R^n } )$g(\parallel x\parallel _{R^n } ) ∈ L loc p (R n ) with 1 ≤ p < ∞, then the RBF neural networks with g as the activation function can approximate any given function in L p (K) with any accuracy for any compact set K in R n , if and only if g(x) is not an even polynomial.L p approximation capability of radial basis function (RBF) neural networks is investigated. If g: R +1 → R 1 and $g(\parallel x\parallel _{R^n } )$g(\parallel x\parallel _{R^n } ) ∈ L loc p (R n ) with 1 ≤ p < ∞, then the RBF neural networks with g as the activation function can approximate any given function in L p (K) with any accuracy for any compact set K in R n , if and only if g(x) is not an even polynomial.
关 键 词:neural networks radial basis function L p approximation capability
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222