Low-frequency stimulation of the external globus palladium produces anti-epileptogenic and anti- ictogenic actions in rats  被引量:2

Low-frequency stimulation of the external globus palladium produces anti-epileptogenic and anti- ictogenic actions in rats

在线阅读下载全文

作  者:Hui CHENG Yi-fang KUANG Yang LIU Yi WANG Zheng-hao XU Feng GAO Shi-hong ZHANG Mei-ping DING Zhong CHEN 

机构地区:[1]Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China [2]Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China [3]Department of Neurology, Zhejiang Hospital, Hangzhou 310058, China [4]Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China

出  处:《Acta Pharmacologica Sinica》2015年第8期957-965,共9页中国药理学报(英文版)

摘  要:Aim: To investigate the anti-epileptic effects of deep brain stimulation targeting the external globus palladium (GPe) in rats. Methods: For inducing amygdala kindling and deep brain stimulation, bipolar stainless-steel electrodes were implanted in SD rats into right basolateral amygdala and right GPe, respectively. The effects of deep brain stimulation were evaluated in the amygdala kindling model, maximal electroshock model (MES) and pentylenetetrazole (PTZ) model. Moreover, the background EEGs in the amygdala and GPe were recorded. Results: Low-frequency stimulation (0.1 ms, 1 Hz, 15 min) at the GPe slowed the progression of seizure stages and shortened the after-discharge duration (ADD) during kindling acquisition. Furthermore, low-frequency stimulation significantly decreased the incidence of generalized seizures, suppressed the average stage, and shortened the cumulative ADD and generalized seizure duration in fully kindled rats. in addition, low-frequency stimulation significantly suppressed the average stage of MES-induced seizures and increased the latency to generalized seizures in the PTZ model. High-frequency stimulation (0.1 ms, 130 Hz, 5 min) at the GPe had no anti-epileptic effect and even aggravated epileptogenesis induced by amygdala kindling. EEG analysis showed that low-frequency stimulation at the GPe reversed the increase in delta power, whereas high-frequency stimulation at the GPe had no such effect. Conclusion: Low-frequency stimulation, but not high-frequency stimulation, at the GPe exerts therapeutic effect on temporal lobe epilepsy and tonic-colonic generalized seizures, which may be due to interference with delta rhythms. The results suggest that modulation of GPe activity using low-frequency stimulation or drugs may be a promising epilepsy treatment.Aim: To investigate the anti-epileptic effects of deep brain stimulation targeting the external globus palladium (GPe) in rats. Methods: For inducing amygdala kindling and deep brain stimulation, bipolar stainless-steel electrodes were implanted in SD rats into right basolateral amygdala and right GPe, respectively. The effects of deep brain stimulation were evaluated in the amygdala kindling model, maximal electroshock model (MES) and pentylenetetrazole (PTZ) model. Moreover, the background EEGs in the amygdala and GPe were recorded. Results: Low-frequency stimulation (0.1 ms, 1 Hz, 15 min) at the GPe slowed the progression of seizure stages and shortened the after-discharge duration (ADD) during kindling acquisition. Furthermore, low-frequency stimulation significantly decreased the incidence of generalized seizures, suppressed the average stage, and shortened the cumulative ADD and generalized seizure duration in fully kindled rats. in addition, low-frequency stimulation significantly suppressed the average stage of MES-induced seizures and increased the latency to generalized seizures in the PTZ model. High-frequency stimulation (0.1 ms, 130 Hz, 5 min) at the GPe had no anti-epileptic effect and even aggravated epileptogenesis induced by amygdala kindling. EEG analysis showed that low-frequency stimulation at the GPe reversed the increase in delta power, whereas high-frequency stimulation at the GPe had no such effect. Conclusion: Low-frequency stimulation, but not high-frequency stimulation, at the GPe exerts therapeutic effect on temporal lobe epilepsy and tonic-colonic generalized seizures, which may be due to interference with delta rhythms. The results suggest that modulation of GPe activity using low-frequency stimulation or drugs may be a promising epilepsy treatment.

关 键 词:epilepsy deep brain stimulation external globus palladium seizures amygdala kindling maximal electroshock model pentylenetetrazole model electroencephalogram 

分 类 号:Q424[生物学—神经生物学] TQ460.6[生物学—生理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象