检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学,辽宁大连116024
出 处:《中文信息学报》2015年第3期155-161,共7页Journal of Chinese Information Processing
基 金:国家自然科学基金(61277370;61402075);国家863高科技计划(2006AA01Z151);辽宁省自然科学基金(201202031;2014020003);教育部留学回国人员科研启动基金;高等学校博士学科点专项科研基金(20090041110002);中央高校基本科研业务费专项资金
摘 要:查询扩展作为一门重要的信息检索技术,是以用户查询为基础,通过一定策略在原始查询中加入一些相关的扩展词,从而使得查询能够更加准确地描述用户信息需求。排序学习方法利用机器学习的知识构造排序模型对数据进行排序,是当前机器学习与信息检索交叉领域的研究热点。该文尝试利用伪相关反馈技术,在查询扩展中引入排序学习算法,从文档集合中提取与扩展词相关的特征,训练针对于扩展词的排序模型,并利用排序模型对新查询的扩展词集合进行重新排序,将排序后的扩展词根据排序得分赋予相应的权重,加入到原始查询中进行二次检索,从而提高信息检索的准确率。在TREC数据集合上的实验结果表明,引入排序学习算法有助于提高伪相关反馈的检索性能。Query Expansion is an important technique for improving retrieval performance. It uses some strategies to add some relevant terms to the original query submitted by the user, which could express the user's information need more exactly and completely. Learning to rank is a hot machine learning issue addressed in in information re- trieval, seeking to automatically construct ranking mode!s determining the relevance degrees between objects. This paper attempts to improve pseudo-relevance feedback by introducing learning to rank algorithm to re-rank expansion terms. Some term features are obtained from the original query terms and the expansion terms, learning from which we can get a new ranking list of expansion terms. Adding the expansion terms list to the original query, we can acquire more relevant documents and improve the rate of accuracy. Experimental results on the TREC dataset shows that incorporating ranking algorithms in query expansion can lead to better retrieval performance.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.60.124