检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔大鹏[1]
机构地区:[1]山西师范大学临汾学院,山西省临汾市041000
出 处:《电子技术与软件工程》2015年第16期36-37,共2页ELECTRONIC TECHNOLOGY & SOFTWARE ENGINEERING
摘 要:本文将基于正交最小二乘的RBF神经网络算法引入自适应噪声对消中,提出一种基于最小二乘算法和径向基网络的自适应噪声抵消(adaptive filter based on least square algorithm and radial basis network,简称OLSRBFAF)算法。RBF网络因其具有良好的推广能力,简单的结构和快速的训练过程等诸多优点已被成功应用于很多领域。RBF神经网络中关键因素是基函数中心的选取,中心选取不当构造出来的RBF网络的性能一般不能令人满意。利用正交最小二乘(orthogonal least squares,简称OLS)算法选取RBF网络中心,解决了径向基函数网络构造这一关键问题。并由于OLS算法中采用了最小二乘(least-square,简称LS)准则,其对时变信道具有快速跟踪的能力。利用MATLAB仿真结果分析可知,通过将两种算法结合引入自适应噪声抵消系统,使该系统具有误差更小,消除噪声能力更强的优点。
关 键 词:径向基函数网络 正交最小二乘算法自适应 噪声抵消
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.70.76