检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《山东农业科学》2015年第7期122-125,141,共5页Shandong Agricultural Sciences
基 金:河南省科技厅科技发展计划项目(No.134300510037)
摘 要:为提高苹果叶部病害自动识别水平并实现快速有效地识别苹果叶部病害,本研究首先采用小波滤波算法对采集的苹果叶部锈病、斑点落叶病的图像进行去噪平滑,然后利用病斑颜色差异和边界跟踪算法对病斑进行分离,最后提取病斑颜色、形状和纹理等方面的特征,采用支持向量机(SVM)技术对病害进行自动识别。试验表明,该方法对苹果叶锈病和斑点落叶病样本进行处理识别的正确率较高,能够满足实际需求。该结果对苹果叶部病害的自动快速诊断和防治具有一定的指导意义。To improve the level of automatic identification and implement quickly and effectively identifi- cation of apple leaf diseases, the images of rust and alternaria leaf spot were firstly pre - processed using wavelet filtering algorithm, then, the disease spots were correctly segmented based on color difference and boundary following algorithm, finally, the disease features of color, shape and texture were extracted for auto - recognizing via SVM technology. The tests showed that the method showed a high accuracy for disease recognition and could meet the actual needs. The results had certain significance to the rapid automatic diagnosis and control of apple leaf diseases.
关 键 词:苹果叶部病害 小波滤波算法 最大类间方差法 边界跟踪算法 支持向量机(SVM) 模式识别
分 类 号:S436.611[农业科学—农业昆虫与害虫防治] TP391.4[农业科学—植物保护]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28