检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《资源开发与市场》2015年第9期1057-1062,共6页Resource Development & Market
基 金:教育部新世纪优秀人才支持计划项目(编号:NCET100460)
摘 要:通过构建物流发展水平评价指标体系,运用突变级数法测算了长三角城市群物流发展水平,并通过空间自相关法对其空间关联格局进行了分析。结果显示,物流发展水平与经济实力高度相关,可将长三角16市划分为物流发达、较发达、欠发达和不发达4类区域。大部分城市落在第一、三象限,表明长三角城市群物流发展水平空间关联性显著,具有"马太效应";上海、南京等4市落在HH区,呈现"高—高"正关联;常州、泰州落在LH区,呈现"低—高"负关联;镇江、扬州等8市落在LL区,呈现"低—低"正关联;苏州、杭州落在HL区,呈现"高—低"负关联。This paper constructed the regional logistics evaluation system, and used the catastrophe progression method to assess the level of logistics development of Changjiang River Delta. By using spatial autoeorrelation analysis method, described the spatial correlation pattern. It turned out that, the city logistics level had a high degree of correlation with economic development, and then divided 16 cities into developed, relatively developed, underdeveloped, and undeveloped logistics region. Most of the cities in the first and third quadrant, logistics development level of Changjiang River Delta had the phenomenon of positive general spatial autocorrelation, and showed the "Matthew effect". HH area included Shanghai, Nanjing etc showing "high - high" positive correlation, while LH area included Changzhou, Taizhou showing "low - high" negative correlation. LL area included Zhenjiang, Yangzhou etc showing "low- low" positive correlation, while HL area included Suzhou, Hangzhou etc showing "high - low" negative correlation.
分 类 号:F250[经济管理—国民经济] O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229